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Abstract

A quantum particle moving in a periodic potential, with periodicity d, when acted by an

external constant force F undergoes the dynamical phenomenon of Bloch-Zener oscillations

(BZO) . We investigate BZO of a neutral cold atom in an optical cavity pumped by a laser.

We find that the single mode electromagnetic field of the optical cavity is affected by the

atomic dynamics and propose the idea that a measurement of the electromagnetic field

leaking out of the cavity will reflect the BZO frequency ωB = Fd/~, and can be used for a

precision measurement of F . The motivation for such a study comes from the fact that if

the force F is gravity then one can probe gravitational forces on sub-millimeter scales since

the size of these systems are generally a few hundreds of microns. Such a study can be

used to detect deviations from Newtonian gravity at short range proposed by some theories

beyond the standard model of particle physics.
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Chapter 1

Introduction

When electrons in a crystal lattice with period d are subject to a constant force F , as in the

case of an electric field, they undergo oscillatory motion. This idea was proposed by Zener

in [1] based upon earlier work by Bloch [2], the frequency of these Bloch-Zener Oscillations

(BZO) is given by :

ωB =
Fd

~
. (1.1)

BZO have been proven difficult to observe in condensed matter systems since scattering from

impurities leads to rapid dephasing. The first observations [3] were made in epitaxially grown

semiconductor superlattices where DC electric fields were used to generate THz oscillations,

but nevertheless dephasing occurs within several periods [4]. Cold atoms in optical lattices

have provided an alternate setup to observe BZO. [5, 6].

With the discovery of laser cooling (proposed by [7], first experiments done by [8] fol-

lowed by [9]) cooling atoms to temperatures as low as a few microKelvin became possible.

At such low temperatures the quantum mechanical nature of the atom becomes important.

Laser cooling combined with electromagnetic trapping leads to some spectacular quantum

mechanical effects including Bose Einstein condensation [10, 11] of atoms where the atoms

macroscopically occupy a single quantum state. Apart from the achievement of BECs, an-

other interesting development was that atoms cooled to such low temperatures can then

be held in optical lattices, which are standing waves made by the interference of two or

more laser beams. Cold atoms in optical lattices are analogous to electrons in a periodic

solid lattice. In this manner traditional condensed matter systems can be simulated using

cold atoms. Although such cold atom systems are analogous to traditional condensed mat-

ter systems, they enjoy a significant number of advantages. Atoms in traps and lattices

are extremely idealized systems with almost no imperfections or impurities and minimal

interactions with the environment. They are therefore simple to describe theoretically and

maintain their quantum coherence for long times in comparison to the relevant timescales

1



CHAPTER 1. INTRODUCTION 2

of the dynamics. In atomic systems almost all of the parameters are under our control.

For example, the dimension and symmetry of the lattice, the strength and even the sign

of the interatomic interactions, can all be chosen at will. The measurement schemes are

radically different from traditional condensed matter schemes, e.g. single atoms can be

non-destructively imaged, allowing us to track (and address) individual atoms in real time

(see references [12]-[14] for some of the landmark experiments in this field and [15] for a

comprehensive review of many-particle cold atom systems). Thus cold atoms can be used

to study quantum mechanics in a setup that has just the bare essentials of the problem.

In the field of cavity quantum electrodynamics (QED) , the ability to study the interac-

tion of single atoms withthe electromagnetic field inside a cavity has enabled the realisation

of simple individual quantum systems whose dynamics can be manipulated (look at [16]-

[21]). The availability of small cavities (length∼ 102 µm) with very high finesse means that

the coherent interaction between the electromagnetic mode in the cavity and the atom is

strong and hence a single atom can significantly alter the field inside the cavity. This is

because the atom-light coupling constant in the dipole limit, g0, is inversely proportional to

the square root of the cavity mode volume. In the so called strong-coupling limit sources

of dissipation like spontaneous scattering and loss of light from imperfect mirrors (which is

low for high finesse cavities) are much smaller than the coherent atom-light coupling g0.

In this thesis, the system we consider is a single two-level cold-atom with resonance

frequency ω0 in an optical cavity. We assume that the electromagnetic field inside the

cavity is a single-mode field with frequency ωc and the atom-field interaction is in the dipole

limit. The cavity has a linewidth κ and we drive the cavity mode on resonance using an

external pump laser. The cavity frequency and the atomic levels are far detuned from each

other. This means one can ignore the incoherent spontaneous emission process and the

dipole force experienced by the atom can be derived from a potential that is periodic with

period given by π/kc (where ωc = ckc). Thus, effectively we have a single atom moving in

a periodic potential. We add to this a constant force term given by F . This means BZO of

the atom will occur. We propose to use gravity as the force causing the BZO and make a

precision measurement of ωB, which in turn will determine F .

The motivation for a such a study arises because some theories beyond the standard

model of particle physics [22, 23] that incorporate extra spatial dimensions predict that the

form of Newton’s law of gravitation may be modified at short ranges (denoted by R) i.e.

F = G∗
n

m1m2

rn+2
for r ≪ R (1.2)

= G∗
n

m1m2

Rnr2
for r ≫ R (1.3)
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In the above equation the sub-script n stands for the number of extra-dimensions in the

fundamental theory used to derive the modified Newton’s law. Optical cavities with lengths

on the order of hundreds of microns have been produced. The measurement of the force F

using such a setup can help one probe force ranges on the micron scale and this can in turn

help to test the validity of the above form for gravity. Moreover one can use such a setup to

measure other short range forces like the Casimir-Polder force [30] or the local acceleration

due to gravity g.

An important feature of our proposal concerns the measurement process. As mentioned

before we assume that we are in the strong-coupling regime of cavity QED where the atom-

field coupling g0 is large. Hence the atomic dynamics affects the electromagnetic field inside

the cavity. A simple way to understand this is to appeal to a classical model where a point-

like atom is in a standing wave electromagnetic field that is heavily detuned from the atomic

transition frequency. When the atom sits at a node of the cavity field, the dipole coupling

is zero and the transmitted intensity is maximum and vice-versa for the antinode. Thus

the transmitted intensity in a cavity depends on the atomic position. In other words the

effective refractive index of the cavity considered as a black box is changed by the presence

of the atom [20]. The presence of an atom effectively changes the resonance frequency of the

cavity and the amplitude and phase of the transmitted light depends on atomic position.

The measurement process in this scheme involves observing the light that is transmitted

through the cavity mirror which has finite reflectivity. We find from our analysis that the

transmitted field’s phase and amplitude are modulated at the Bloch frequency. Thus, a con-

tinuous measurement of the transmitted field can be used to determine the Bloch frequency.

In BZO experiments using cold atoms [5, 6] [24]-[28] the general measurement procedure

involves holding the atoms in an optical lattice for different times followed by a time of flight

measurement where the atoms are destructively imaged. Hence to even measure one BZO

many repetitions of the above process are needed. In contrast, for the scheme we propose,

one can continuously observe many Bloch periods from the cavity output.

The plan of the thesis is as follows. In the second chapter we present the Hamiltonian for

our problem and derive coupled equations of motion for the field and the atomic degrees of

freedom. In the third chapter we detail the basic theory of BZO. In the fourth chapter the

coupled equations of motion are solved numerically and two qualitatively different regimes

for the solution are identified. We also present a self consistent solution for the light field

amplitude as a function of time based on the theory of BZO considered in chapter 3. Note

that we have not gone into experimental details of the setup we propose in this introduction.

We devote chapter 5 to give a rough schematic for the proposed experiment. We also

discuss the limitations of this proposal and the experimental challenges that may arise.
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In that chapter for the sake of completeness and comparison we also go through various

experiments that have already been done/proposed in connection with using BZOs of cold

atoms to perform precision measurements. The last chapter summarizes our work.



Chapter 2

Hamiltonian and Equations of

Motion

2.1 Introduction

The system under consideration is a two-level atom in a single quasi-mode of an optical

cavity. The cavity mode is driven resonantly by an external pump laser. The cavity mode

frequency is detuned from the atomic transition frequency. The atom-field interaction is

treated in the dipole approximation and the rotating wave approximation. This means our

hamiltonian will be an extension of the well known Jaynes-Cummings hamiltonian for the

interaction between a two-level atom and a single mode field.

2.2 The Hamiltonian

The hamiltonian broadly consists of the following parts [31, 32, 33]

H = Hatom +Hfield +Hint +Hpump . (2.1)

Let us now write down the expressions for the individual parts. The atomic internal degrees

of freedom of the atom consists of two-levels separated in energy by ~ω0 and this can be

represented using the Pauli matrix σz. In this formalism the internal states are represented

by spinors. The atom’s external degrees of freedom contribute to the Hamiltonian through

the kinetic energy term and through the energy of interaction with the constant force F .

Hatom =
~ω0

2
σz +

p̂2

2M
+ Fz . (2.2)

5



CHAPTER 2. HAMILTONIAN AND EQUATIONS OF MOTION 6

The free field term describes the single mode electromagnetic field inside the optical cav-

ity (with frequency ωc) :

Hfield = ~ωcâ
† â . (2.3)

In the pumping term, η gives the pumping parameter (we assume the driving mode is a

classical laser field). In terms of laser photon current (Iph) from the driving laser and κ,

η =
√

κIph . The pump laser frequency is given by ωp.

Hpump = i~η
(

â†e−iωpt − âeiωpt
)

. (2.4)

The driving term can be derived from the following consideration. Consider the interaction

between a single driving mode b̂ and the cavity mode â. The standard photon-number

conserving interaction term between two single modes is given by :

Hdr = i~â†b̂− i~âb̂†. (2.5)

If we now assume that the driving mode is a classical mode described by constant amplitude

η and with time dependent phase e−iωpt 1, we get :

Hdr = i~η
(

â†e−iωpt − i~âeiωpt
)

, (2.6)

which is the driving term in Eq. 2.4.

Finally we need to write down the atom-field interaction in the dipole approximation and

the rotating wave approximation. Let us first write down the form of the dipole interaction.

Hint = (−~d · ǫ̂)E(z, t) . (2.7)

Now in terms of the single mode annihilation and creation operators the field inside the

cavity is given by :

E(z, t) =

√

~ωc

2ǫ0V

(

â+ â†
)

cos(kcz) . (2.8)

Now we can represent the dipole moment (assuming we can choose it to be real) as,

~d = ~µ(σ+ + σ−), (2.9)

where the σ+ and σ− are the ladder operators for the atomic states i.e. the former excites

the atom to the higher state from the lower state and the latter does the reverse. We chose

the atomic quantisation axis such that the dipole constant g is real and can be written in

1We assume that the driving mode is in a coherent state that obeys b̂ | b(0)〉 = η | b(0)〉
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the form :

g = g0cos(kcz) . (2.10)

In the above equation the atom-light coupling constant g0 is defined as :

g0 = µ

√

ωc

2ǫ0V ~
. (2.11)

This leads to the following expression for the interaction term :

Hint = ~g(â+ â†) (σ+ + σ−) . (2.12)

Now in the absence of the interaction term the evolution of the operators is as follows :

a(t) = â(0)e−iωct (2.13)

σ+(t) = σ+(0)eiω0t . (2.14)

Hence in the above expression for Hint, the terms âσ− and â†σ+ (anti-resonant terms) evolve

much faster than the other terms namely âσ+ and â†σ− (resonant terms). For example :

âσ− ≈ e−i(ωc+ω0)t (2.15)

â†σ− ≈ ei(ωc−ω0)t . (2.16)

Obviously, in the above equations, near resonance, the second term evolves much more slowly

than the first. The anti-resonant terms can be ignored (since they average to zero) provided

we are near enough to resonance so that the detuning δ = (ωc − ω0) obeys δ << (ωc + ω0).

Neglecting the anti-resonant terms (Rotating Wave Approximation) we have :

Hint = ~g
(

âσ+ + â†σ−
)

. (2.17)

Accordingly the full Hamiltonian is (where we include a phenomenological decay term using

the cavity line width κ which signifies the fact that the cavity mirrors have finite reflectivi-

ties) :

H =
~ω0

2
σz +

p̂2

2M
+Mgz + ~ωcâ

† â+ ~g
(

âσ+ + â†σ−
)

− i~η
(

âeiωpt − â†e−iωpt
)

− i~κâ†â.

(2.18)

In our system the atom-light detuning δ is set to be large leading to low saturation of the

atomic transition. This means the excited state occupation probability for the atom is very



CHAPTER 2. HAMILTONIAN AND EQUATIONS OF MOTION 8

low. For a atom with dipole coupling g0 and spontaneous line-width Γ, in a standing wave

light detuned by δ (with a mean photon number n̄), the fractional population of the excited

state is given by [34] :

σ22 =
s

2(1 + s)
, (2.19)

where the saturation parameter s is given by :

s =
2g2

0n̄

δ2 + Γ2

4

. (2.20)

For s ≪ 1 we can set the Pauli matrix σz = −1, signifying the fact that only the lower

level is occupied (this is called the linear dipole approximation [35]). Before we carry

out that change we will adiabatically eliminate the excited state so that Eq. 2.12 leads to

an effective light-induced potential for the ground state of the atom. The details of the

adiabatic elimination are worked out in the Appendix A. The effective Hamiltonian after

the adiabatic elimination is :

H =
~ω0

2
σz +

p̂2

2M
+Mgz+~ωcâ

† â− ~g2
0 cos2(kcz)â

†â
δ

σz − i~η
(

âeiωpt − â†e−iωpt
)

− i~κâ†â.

(2.21)

To the above Hamiltonian we apply a unitary transformation with,

Û = exp

[

it

~
~ωp(â

†â+ 1/2σz)

]

This transformation, in conjunction with the assumption that the cavity mode and pump

mode are in resonance, will eliminate the free evolution terms in the hamiltonian and express

it in a form where the emphasis will be on the atom-light interaction. Using the prescription

stated in Eq. A.3 for unitary transformations we have the transformed hamiltonian (where

∆c = ωc − ωp and ∆0 = ω0 − ωp) :

H
′

=
~∆0

2
σz +

p̂2

2M
+Mgz + ~∆câ

† â− ~g2
0 cos2(kcz)â

†â
δ

σz − i~η
(

â− â†
)

− i~κâ†â .

(2.22)

We assume that the bare cavity-driving laser detuning is zero. So ωc = ωp and ∆c = 0. We

also set σz = −1 for reasons stated before. Because of this the first term in H
′

becomes

−~∆0
2 , a constant that can be ignored for deriving equations of motion. So the hamiltonian

becomes (dropping the primes in the notation for convenience) :

H =
p̂2

2M
+Mgz +

~g2
0 cos2(kcz)â

†â
δ

− i~η
(

â− â†
)

− i~κâ†â . (2.23)
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Let us now second-quantise the external atomic degrees of freedom. Call the second-

quantised field operator Ψ̂(z); then the Hamiltonian can be rewritten as :

H =
~

2

2M

∫

∣

∣

∣
∇zΨ̂

∣

∣

∣

2
dz+

~g2
0

δ
a†a

∫

∣

∣

∣
Ψ̂
∣

∣

∣

2
cos2(kcz) dx+F

∫

∣

∣

∣
Ψ̂
∣

∣

∣

2
z dz− i~η(a − a†)− i~κa†a.

(2.24)

The equations of motion are :

i~
˙̂
Ψ = [Ψ̂,H] (2.25a)

i~ ˙̂a = [â,H] . (2.25b)

Since we have adiabatically eliminated the excited state, the field operator equation for Ψ̂

reduces to an equation for the wave function Ψ. Let us also assume the field is in a coherent

state with coherence parameter α. We get the equation for α from the operator equation

for â. Thus, the equations of motion are :

i~ Ψ̇ =

(

− ~
2

2M
∂2

z +
~g2

0 α
∗α

δ
cos2(kcz) + Fz

)

Ψ (2.26a)

α̇ = −i
α

δ
g2(t) + η − κα , (2.26b)

where the term representing atomic back action on the field is given by :

g2(t) = g2
0

∫

|Ψ|2 cos2(kcz) dz . (2.27)

From the equation for the atomic wave function (Eq. 2.26a) one can see that it is the

Schrödinger equation for a quantum particle moving in a periodic lattice under the influence

of a constant force. The lattice depth, is a function of time and is given by :

s(t) =
~g2

0 α
∗(t)α(t)

δ
. (2.28)

The periodicity of the lattice is given by the cos2(kcz) term and it is π/kc. Our aim is to start

with an initial state for the field and the wave function and calculate the field parameter α

as a function of time. As stated in the introduction the observable physical quantity, light

that leaks out of the optical cavity, can be described by the same field parameter α up to a

multiplicative constant determined by the reflectivity of the mirrors.

In the next chapter the basic theory of BZO is discussed, which will be used to interpret

the numerical results in the following chapter.



Chapter 3

Bloch-Zener Oscillation Theory

3.1 Introduction
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Figure 3.1: Band Structure in a deep lattice, hence the flat band structure(extended zone
scheme).

In this chapter we will review the basic theory of Bloch-Zener oscillations. We will also

look at what happens to this phenomenon when the lattice depth of the periodic potential

in which the atom is moving is not constant in time. This extension to the standard theory

of BZO is necessary because in an optical cavity in the strong coupling regime the motion of

the atom causes the cavity resonance frequency to change with time which in turn controls

the amount of light in the cavity.

10
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3.2 Bloch Functions

As described in the last chapter the atomic wave function obeys a Schrödinger equation.

Referring to Eq. 2.26a and Eq. 2.28, we write down the hamiltonian as :

H = H0 + Fz (3.1)

H0 =
p̂2

2M
+ V (z) =

p̂2

2M
+ s cos2(kcz) , (3.2)

where the lattice depth is given by :

s ≡ ~g2
0 α

∗(t)α(t)

δ
. (3.3)

In the above equation we have suppressed the time-dependence of the lattice depth s as one

can notice. We will first consider the usual Bloch theory of a particle moving in a lattice

with fixed depth.

The eigenvalue equation satisfied by H0 is the well known Bloch equation first discussed

for the case of an electron moving in the periodic potential of a crystal lattice. The pe-

riodicity of the lattice in our case is given by V (z + π/kc) = V (z). Bloch functions are

indexed by two quantum numbers. The first is the band index. This comes into play since

the energy levels of a particle in a periodic potential (Fig. 3.1) are arranged into bands.

We suppress this index since we will be interested in a single band theory (only the ground

band is of interest to us). The second index is the quasi-momentum index which is the

analog of ordinary momentum, in periodic structures. Thus, the eigenvalue equation with

φq representing the Bloch functions is :

H0φq = Eqφq . (3.4)

We next detail a few important properties of Bloch functions.� Defining Properties

Let us call the period of the lattice d where,

d =
π

kc
. (3.5)

Bloch functions can be written in the form (Bloch theorem [36])

φq(z) = eiqzuq(z) , (3.6)
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where the periodicity of uq is given by :

uq(z + d) = uq(z) . (3.7)

Another important property of the Bloch functions is :

φq+K = φq , (3.8)

where K is a reciprocal lattice vector. K can take the following values :

K = 2n
π

d
= 2nkc with n ∈ Z . (3.9)� Born-Von Karmann Boundary Conditions

Lattices in the real world, although not infinite, are large in dimensions compared to

the lattice spacing. This means we can impose periodic boundary conditions on the

Bloch waves leading to discretization of the allowed quasi-momentum indices. Let us

suppose that our system has a size L = Nd = Nπ/kc. We require the Bloch functions

to be periodic with this length :

φq(z +Nd) = φq(z) . (3.10)

The periodic part of Bloch function, uq, has the period d which means it is naturally

periodic over integer multiples of d :

uq(z +Nd) = uq(z) . (3.11)

In order to satisfy Eq. 3.10 we require :

eiqz = eiqz+iqNd (3.12a)

eiqNπ/kc = 1 . (3.12b)

The last condition implies :

Nqπ/kc = 2nπ with n ∈ Z . (3.13)

Thus, according to the BVK boundary conditions, the allowed values of q are :

q = qn = 2nkc/N . (3.14)
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This shows that the allowed values of q are discrete in a finite system.

In the next section we will discuss the theory of BZO.

3.3 Bloch-Zener Oscillation Theory

When we add a linear potential to the already existing periodic potential, we get the in-

teresting dynamical phenomenon of Bloch-Zener oscillations [2, 1]. There are two ways to

approach this problem. The first is to use semi-classical theory and the second is to use

quantum mechanical theory. Although there was consensus on the semi-classical approach

the quantum approach was intensely debated (for example look at references [39] - [42]).

We take the view point of W.V. Houston expressed first in the reference [38].

The hamiltonian under consideration is :

H = H0 +Mgz . (3.15)

3.3.1 Semi-classical Theory

The first approach to understanding BZO is to use semi-classical theory. Here we assume

that the quasi-momentum index q is a semi-classical variable which in the presence of a

linear potential obeys the Bloch acceleration theorem [36] :

~q̇ = −F . (3.16)

This result originates from Sommerfeld’s theory of electron transport in solids where the

variable ~q plays a role similar to that of regular classical momentum and the above equation

is just Newton’s second law with the force term −F . Solving the above equation, we get

(with q|t=0 = q0)

q(t) = q0 −
Ft

~
(3.17)

Appealing to the Eq. 3.8, we can see that quasi-momentum indices that are separated by

a reciprocal lattice vector K = 2kc can be identified. We see that the time evolution in

Eq. 3.17 will eventually evolve q0 to the edge of the first Brillouin zone i.e. near q = kc,

then we can map it back to the opposite edge of the zone q = −kc. After this the quasi-

momentum index evolves as before and in time TB reaches the initial value of q0, making

this evolution periodic. To determine the period TB set :

q(TB) = q(0) − 2kc = q(0) − FTB

~
. (3.18)
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Figure 3.2: Schematic of Bloch evolution. In the first panel the energy dispersion of the
ground band is shown. The second panel has the semiclassical velocity of the atom, v ∝ ∂E

∂q
which goes to zero at the band edges [44].

This determines the Bloch period and frequency as :

TB =
2~kc

F
=

2π~

Fd
(3.19a)

ωB =
Fd

~
. (3.19b)

In Fig. 3.2 we plot the ground band dispersion and the semiclassical velocity (v ∝ ∂E
∂q ) of a

typical particle in a periodic potential. The velocity goes to zero at the band edge (k = kc)

and the atom re-emerges with a negative velocity at the opposite edge (k = −kc) leading to

the periodic BZO phenomenon. The change of sign of the velocity at the band edge can be

thought of as Bragg scattering of the atom from the lattice potential.

Now we can substitute numerical values to check what the Bloch period will be for atoms

used in cold atom setups. For Cs (M ≈ 132 amu) atoms in an optical lattice formed using
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lasers with wavelength λL = 785nm [5],

ωB = Mgπ/~kL ≈ 8Khz .

3.3.2 Quantum mechanical approach

Before going to the details of Houston’s approach to the problem and writing down the

wave function that bears his name, we will look at a simple way to understand the BZO

phenomenon from quantum mechanical considerations. Consider the Schrödinger equation

with the full hamiltonian :

i~
dψ(z, t)

dt
= (H0 + Fz)ψ(z, t) . (3.20)

With a gauge transform of the wave function ψ̃(z, t) = e−i F tz
~ ψ(z, t), the equation of motion

for ψ̃ becomes :

H̃ψ̃(z, t) =

(

(p̂− Ft)2

2M
+ s cos2(kcz)

)

ψ̃(z, t) = i~
dψ̃(z, t)

dt
. (3.21)

Now the hamiltonian H̃ looks like H0 except for the momentum term that is translated by

Ft which implies the translation of the quasi-momentum index by Ft/~. This is exactly the

statement according to Bloch acceleration theorem (Eq. 3.17).

One important point that comes out of the Houston’s work [38] and also the from the dis-

cussions of Zak and Wannier [39]-[42] is that it is difficult to find stationary eigenstate solu-

tions for the full Hamiltonian H = H0+Fz. It has been established rigorously [43] that, in a

finite lattice the solutions are resonances with finite widths rather than eigen-energies. Hence

a simpler question to ask is whether there are solutions to the time-dependent Schrödinger

equation Eq. 3.20 that also instantaneously satisfy the time-independent Schrödinger equa-

tion. The formulation of this question in the above manner suggests that the solution we

find will be adiabatic in nature (since adiabatic eigenstate solutions to a time-dependent

Hamiltonian have the same property, they are instantaneous eigenstates). This means we

will get solutions that come with a limited regime of applicability.

Houston’s solution is a direct extension of the semiclassical Bloch evolution idea. One

way to motivate Houston’s solution is to write down the eigenvalue equation obeyed by the

spatially periodic “amplitude” part of the Bloch function uq (Since we are concerned with

just the ground band the eigen-functions are indexed only by the quasi-momentum index in

this band) :

Huuq =

((

(p̂− ~q)2

2M

)

+ s cos2(kcz)

)

uq(z) = Equq(z) . (3.22)
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Comparing this equation to the Hamiltonian for the Gauge transformed wave function of

the full problem including the external force (i.e. compare Hu to H̃) :

H̃ =

(

(p̂− Ft)2

2M
+ s cos2(kcz)

)

, (3.23)

one can guess that the instantaneous eigenstate at time t for H̃ is [when you start with

ψ̃(z, t = 0) = φq0(z)] :

ψ̃(z, t) = eiq0zu(q0−λt)(z) exp

[

−(i/~)

∫ t

Eq0−λτdτ

]

, (3.24)

where λ = F/~ .

Thus the Houston solution for the full Schrödinger equation (Eq. 3.20) can be written

as

ψ(z, t) = e
iF t
~ ψ̃(z, t) = exp [i (q0 − λt) z]u(q0−λt)(z) exp

[

−(i/~)

∫ t

Eq0−λτdτ

]

. (3.25)

Naturally, this is not an exact solution. This choice satisfies the Schrödinger equation but

for an extra term (call q(t) = q0 − λt)

−(~/i)

(

−λ
duq(t)

dq

)

exp [iq(t)z] exp

[

−(i/~)

∫ t

Eq0−λτdτ

]

(3.26)

This term is zero when the external field F = 0 and/or when
duq(t)

dq is small (this happens

for example in the case of a free electron). In general Eq. 3.25 will be a good solution

when the term Eq. 3.26 is small. This is true when the external field is small and we will

quantify what we mean by small below. When the external field is small this solution is a

good approximation to the exact solution for all q except at the edge of the band where
duq

dq

becomes large or undefined, so this needs to be handled carefully.

Qualitatively one can see that the wave function at the edge of the zone will be identical

to the function at a point on the opposite end of the zone and we can think of the atom

as Bragg reflecting. After this process the quasi-momentum wavevector continues to evolve

in the same manner as before through the first Brillouin zone. When the electronic band

structure is considered in the extended zone scheme (as shown in the Fig. 3.1) the second

band corresponds to motion in the 2nd Brillouin zone and so on for higher bands. With

a weak external field λ we do not get transitions between zones/bands and our Bragg

scattering picture is a legitimate one.

To see exactly the effect of the higher bands one can try a solution that contains Bloch

functions with quasi-momenta in all the zones. This leads to the adiabaticity criterion,
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which has been worked out in Appendix B. Broadly speaking the main frequency in our

problem ωB, the Bloch frequency, goes as the strength of the linear force and must be less

than the band frequencies. The exact expression for adiabaticity is (Eq. B.9) :

~ωB <<
M∆2

Ed

~2kc
,

where ∆E is the band gap energy.

If we have a lattice depth that is not constant in time and we started at t = 0 with

a Bloch state in the lowest band, we assert that the above Houston type solution with a

time-dependent lattice depth will still be valid. The most important criteria for validity of

such a solution is that the frequency of lattice depth modulation must be much smaller than

the band gaps in order to preserve adiabaticity. Given this to be the case, the Bloch evolved

quasi-momentum index q(t) = q0 − λt is still a good quantum number for the problem (see

[37] for a similar treatment in the case of AC forces) . Since we will use this idea later

let us explictly write down the Houston solution for a modulated lattice, with the initial

quasi-momentum index being q|t=0 = q0,

ψ(z, t) = exp [i (q0 − λt) z] u(q(t),s(t))(z) exp

[

−(i/~)

∫ t

E(q(τ),s(τ))dτ

]

(3.27)

In the above equation we have indexed the function u and the eigen-energy E by the

time-dependent lattice depth s(t) =
~g2

0 α∗(t)α(t)
δ in addition to the usual indexing by the

quasi-momentum q. This serves to differentiate it from Eq. 3.25, where the lattice depth

was understood to be constant. One final remark that will complete this chapter and set

the stage for the numerical results is the observation that in the above solution, based on

Bloch evolution, not only the phase of the solution changes but also the periodic part u

changes with time. This is important because in our numerical simulations we start with

Bloch functions as the intial wave function and the main quantity of interest, the coupling

g2(t) (Eq. 2.27), is independent of the phase and will not change if only the phase evolves.

Consequently, the field inside the cavity does not change for very deep lattices and this

affects the detection process. In the tight binding regime with deep lattices, the functions

u do not evolve in time. We ensure that our lattice depths are not in this limit.

In the next chapter we describe our methods to solve the coupled equations of motion

Eq. 2.26a and Eq. 2.26b.



Chapter 4

Solving the Coupled Equations

4.1 Introduction

In this chapter we will present methods to solve the coupled equations (Eq. 2.26a) and

(Eq. 2.26b). We will identify two qualitatively different regimes based upon the value of the

coupling constant
g2
0

δκ and determine solutions in those regimes.

4.2 Numerical Solution — Setting up the Equations

The equations we want to solve are the coupled equations of motion derived earlier namely

Eq. 2.26a and Eq. 2.26b,

i~ Ψ̇ =

(

~
2

2M
∂2

z +
~g2

0 α
∗α

δ
cos2(kcz) + Fz

)

Ψ (2.26a)

α̇ = −i
α

δ
g2(t) + η − κα . (2.26b)

The basic idea is to start with a given Ψ(0) and α at t = 0. With this we solve Eq. 2.26a

between 0 and some small time interval ∆t, we then use Ψ(0 + ∆t) in Eq. 2.26b to obtain

α(0 + ∆t) and repeat the process for the amount of time we want. When we solve the

equations for small times, we assume the right hand sides have no time dependence. For

instance in Eq. 2.26a, the right hand side has the term
~g2

0α∗(t)α(t)
δ which is time-dependent.

But we assume that α takes the constant value of α(t − ∆t) of the previous iteration. In

this manner we can generate the field parameter α as a function of time. Thus, in this

approach we make the time-dependent coupled equations into time-independent equations

over very small time intervals. The field equation Eq. 2.26b has a simple solution. The only

non-trivial equation is the Schrödinger equation. We solve this by going into the Fourier

space of the wave function Ψ.

18
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Before we solve the Eq. 2.26a we will first rewrite the equation in a scaled dimensionless

form, i.e. starting from,

i~ Ψ̇(z, t) =

(

~
2

2M
∂2

z +
~g2

0 α
∗α

δ
cos2(kcz) + Fz

)

Ψ(z, t) , (4.1)

set kcz = x, scale the energies in the problem by the recoil energy ER = ~k2
c

2m and time by

the Bloch period i.e. let t̄ = t
TB

= tFd
2π~

. Now the equations take the form :

(

− ∂2

∂x2
+ c1α

∗α cos2(x) + c2x

)

Ψ(x, t̄) = i
c2
2

∂Ψ(x, t̄)

∂t̄
. (4.2)

where the new scaled parameters are given by c1 =
~g2

0
δER

and c2 = ~ωB
πER

. In the numerical

solution we assumed that δ < 0 which means the cavity resonance frequency is red detuned

from the atomic transition frequency.

Another thing we can settle before solving the above Schrödinger equation is to solve

the field equation Eq. 2.26b with constant terms on the right,

dα

dt
=

−iag2

δ
+ η − κα , (4.3)

where g2(t) = g2
0

∫

|Ψ|2 cos2(kcz)dz. We evaluate g2 at t̄ to make it time independent. The

equation can be re-written as :

dα

η + α(− ig2

δ − κ)
= dt . (4.4)

Integrating the last equation over a small time interval ∆t̄ get :

∫ α(t̄+∆t̄)

α(t̄)

dα

η + α(− ig2

δ − κ)
=

∫ t̄+∆t̄

t̄
TBdt̄

′ . (4.5)

Solving the last equation we get the value of the field at time instant t̄+ ∆t̄ when we know

the wave function Ψ(t̄) and consequently the function g2(t̄),

α(t̄+ ∆t̄) =
η

ig
2

δ + κ
+
η + α(t̄)

(

−ig
2

δ − κ
)

−ig
2

δ − κ
eδt̄TB . (4.6)

With the field equation settled we can proceed to solve the Schrödinger equation in momen-

tum space. We assume that the system is in a finite box. Box lengths will be in units of one

lattice constant (one period of the cos2(x) potential) which is π in the scaled units. Since we

are in a finite box, we will assume periodic boundary conditions for our momentum vectors
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(known as Born-von Karman (BVK) conditions Eq. 3.14).

The equation to be solved numerically is, (from now on we will refer to the Bloch Period

scaled time units t̄ = t/TB as t for notational convenience)

(

− ∂2

∂x2
− s̃(t) cos2(x) + c2x

)

Ψ(x, t) = i
c2
2
ψ(x, t̄) , (4.7)

where s̃(t) = −c1α∗α =
~g2

0 α∗(t)α(t)
|δ|ER

is the lattice depth s(t) (defined in (Eq. 2.28)) scaled

by the recoil energy ER (up to a sign).

Let L = N0π denote the length of our box in position space. Thus the allowed momentum

wavevectors (by the BVK boundary conditions) are integer multiples of k0 = 2π/L. The

length of one reciprocal lattice vector in this picture is :

K = 2π/d = 2π/π = 2 . (4.8)

Before we expand our equation in momentum space we can simplify the momentum space

equations if we do a particular transformation on the position space wave function. The

transformation is :

Ψ(x, t) = Ψ̃(x, t) exp(−i
c2
c2
2

tx) = Ψ̃(x, t) exp(−i2tx) . (4.9)

The equation satisfied by Ψ̃ is :

(

−s̃(t) cos2(x) + (−i
∂

∂x
− 2t)2

)

Ψ̃(x, t) = i
c2
2

Ψ̃(x, t) . (4.10)

Note that the above transformation is nothing but the gauge transformation with the force

term introduced in the previous chapter (Eq. 3.21), although in scaled units. Expanding

Ψ̃(x, t) in momentum space and substituting into the Schrödinger equation we get,

Ψ̃(x, t) =
∑

n

bn(t)eink0x (4.11a)

bm(t)(mk0 − 2 ∗ t)2 − s̃(t)

4
(2bm + bm−N0 + bm+N0) = i

c2
2

dbm
dt

. (4.11b)

Thus, given the set of momentum coefficients bm(t) and the value of s̃(t), to get to bm(t+∆t)

we have to only solve the above first order equation. Once we have bm(t+ ∆t), we use that

to find α(t + ∆t) and for this we need to calculate g2(t) = g2
0〈cos(x)2〉. Express g2(t) in
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Figure 4.1: Coupling integral g2(t) as a function of time for g2
0/(δκ) = 0.05, δ = −3.067 ×

1010 Hz, s̃ = 5 and η = 2.948 × 106 Hz.

terms of the momentum coefficients :

〈cos2(x)〉 =
∑

n

|bn|2
2

+
1

4
b∗n(bn+N0 + bn−N0) . (4.12)

Before we go on to present the results of our numerical simulations, let us look at the

parameters we chose for our simulations. In our model system we use the 780.2 nm transition

line of Rb atoms in a cavity with decay width κ = 2π × 0.59 MHz and the dipole coupling

is g0 = 2π × 12 MHz (the cavity parameters and the dipole coupling parameter are taken

from the reference [45] ). The force term is the gravitational force given by F = Mg where

the acceleration due to gravity g = 9.8ms−2, giving ωB = 5.289 kHz.

In the next section we will see that the value of the parameter g2
0/(δκ) will lead to two

qualitatively different regimes of the numerical solution. We will describe our solution in

both these regimes. Note that from here on when we refer to the numerical value of g2
0/(δκ)

we mean the positive absolute value.

4.3 Phase Regime

Consider equation Eq. 2.26b :

α̇ = −i
α

δ
g2(t) + η − κα . (2.23b)

The steady state solution for α can be got by setting dα
dt = 0 :

α =
η

κ

1

1 + ig
2(t)
δκ

. (4.13)
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This solution is a good approximation to the real solution when the field relaxation time

τa ≈ κ−1 is much faster than the atomic dynamics. The atomic dynamics are characterised

by frequencies such as the Bloch frequency, the band splitting in the periodic potential and

ωho = 2g0|a|
√

ER/ (~|δ|) which is the effective harmonic frequency at the bottom of the

wells. In deep lattices the band splitting tends to ωho, because each well of the lattice can

be thought of as an independent harmonic oscillator potential. In typical experiments ωB

and ωho are of the order of 2π× 103s−1 whereas κ is in the range 2π× 106 − 1010s−1. Thus

the steady state solution, which we use in our analytic calculations and general arguments,

is a very good approximation although we solve the equation in full for our numerical

calculations (Eq. 4.6). In conventional cavity QED, very high finesse cavities are used to

reach high atom-photon coupling g0, but in our case the cavity line width is the relaxation

parameter and a very small κ is not ideal for this proposal.

The strength of the coupling term g2(t), that is defined in the equation Eq. 2.27, goes

as g2
0 where g0 is the dipole coupling. Thus the important parameter in the above solution

is the coupling value
g2
0

δκ . When this coupling value is very small, we can do the following.

Expand the denominator of Eq. 4.13 :

α ≈ η

κ

(

1 − i
g2(t)

δκ

)

. (4.14)

The last equation can be thought of as the first order expansion of :

α =
η

κ
e−iφ(t) , (4.15)

where

φ(t) =
g2(t)

δκ
. (4.16)

Thus for a small value of the coupling, the amplitude of the light-field inside the cavity is

unchanged and only the phase depends on time. We need to determine the form of g2(t)

as a function of time. Before going to the quantitative results, the important feature we

find is that the coupling g2(t) is a periodic function with the period TB . Thus a continuous

measurement of the light field phase in this regime, using for example a homodyne scheme,

will determine TB accurately. In a homodyne measurement apparatus (Fig. 4.2), the light

field coming out of the cavity is combined with an intense local oscillator (LO) at a beam-

splitter, and a detector collects the resulting interference signal. The relative phase, which

we expect to be periodically modulated in time, can then be obtained by measuring the

resulting intensity which is phase dependent.
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Figure 4.2: Adaptive Homodyne Measurement Schematic.

In our numerical simulation for this ‘phase’ regime we chose the coupling value g2
0/(δκ) =

0.05. The values of g0 and κ are those stated at the end of the last section and the value

of coupling fixes the value of detuning (δ = −3.067 × 1010 Hz). The next choice we make is

the value of the initial lattice depth s̃(0) =
~g2

0α∗α
|δ|ER

. A very deep lattice will mean that the

linear force term will have a very small impact on the dynamics of the wave function. Motion

within a lattice site (known as intrawell oscillations in semiconductor superlattice literature)

will dominate BZO which are phenomena connected to coherence between different wells

[49]. If the lattice depth is chosen to be very small the dynamics are dominated by the

linear force and Landau-Zener tunneling dominates over BZO. We have from our simulations

determined a range of s̃ where we can measure Bloch dynamics clearly. Hence in all our

simulations we chose 4 < s̃ < 15. For the specific case of this phase regime simulation we use

s̃ = 5. From the expression for the lattice depth this determines the initial field parameter

(assumed real), αi = 0.7952. We assume that this field is the empty cavity field given by

ai = η
κ which determines η = 2.948 × 106 Hz. This determines all the parameters that are

needed for the simulation. We chose our initial wave function to be a Bloch function with

quasi-momentum index q = 0 in the initial lattice depth s̃(0). The coupling integral g2(t)

was calculated and has been plotted in Fig. 4.1. Thus, we see that the phase is modulated

at the Bloch frequency for small values of g2
0/(δκ).

4.4 Amplitude Modulation —– Larger Coupling Values

For larger values of g2
0/(δκ), the phase approximation made in the last section does not

hold good. The amplitude of the field parameter, not just its phase, is affected. This means

that the lattice depth s̃(t) =
~g2

0α∗(t)α(t)
|δ|ER

will be a function of time. In the results that we



CHAPTER 4. SOLVING THE COUPLED EQUATIONS 24

discuss below we are assuming that the average intra-cavity photon number α∗α, which is

directly proportional to the lattice depth, is the observable that will be measured from the

signal that comes out of the cavity. Hence the aim of the simulations will be to look at

the behaviour of lattice depth s̃ as a function of time. The simulations were done using

MATLAB RO [46] and a package for sparse matrix exponentials Expokit [47]. Figures were

drawn using Mathematica RO [48].

The first value of coupling we look at will be g2
0/(δκ) = 0.1. This fixes, δ = −1.53 ×

1010 Hz. We choose our initial lattice depth to be given by s̃(0) = 5.495. As we have

discussed above this fixes the value of the initial field amplitude, and this time we find

αi = 0.5912 and hence the value of η = 2.19 × 106 Hz. We again start with a Bloch state in

the initial lattice depth with quasi-momentum index q = 0. The lattice depth as a function

of time has been plotted in Fig. 4.3.

Since the square of the cavity field amplitude is directly proportional to the lattice depth

i.e. s̃(t) =
~g2

0 |α(t)|2
|δ|ER

we will throughout this section use the terms cavity field amplitude and

lattice depth interchangeably in the discussion. Looking at the Fig. 4.3, one can see that for

very short times the cavity field amplitude jumps from its atom-free initial value (αi = η/κ)

to its steady state value in the presence of the atom. This jump can be understood from

the steady state solution Eq. 4.13 i.e.

αi =
η

κ

1

1 − ig
2(t)
δκ

.

The atomic coupling term in the denominator causes the jump and the subsequent dynam-
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Figure 4.3: Lattice depth as a function of time for
g2
0

δκ = 0.1, δ = −1.53 × 1010 Hz and
η = 2.19 × 106 Hz.

ics. After this initial jump the field amplitude is modulated at the Bloch frequency. Thus

detecting the field amplitude as a function of time will lead to an accurate measurement of

the Bloch period. One can see from the short time scale over which the initial jump happens
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that it is a non-adiabatic change caused by particular assumptions of our initial state. So

this jump from the initial value is transient in nature. We will also see in our considerations

of larger coupling the fact that the initial transients are more pronounced and the initial

jump will be much larger.

The next step is to examine if we can explain the modulation of our lattice depth from

the Bloch acceleration theorem. We are still in parameter regimes where κ > (ωB, ωho) and

hence we can use the steady state solution for α(t) (Eq. 4.13) , which means :

s̃(t) =
~g2

0

|δ|ER

η2

κ2

1

1 +
(

g2(t)
δκ

)2 . (4.17)

Note that s̃(t) appears explicitly on the left hand side of Eq. 4.17 and implicitly on the

right hand side through the coupling integral g2(t). We need to solve this equation in a

self-consistent manner. In order to help us understand Eq. 4.17 let us temporarily assume

that the lattice depth is a given periodic function of time (for e.g. s(t) = s0 sin(ωst)) rather

than something that needs to be determined self-consistently. Let us also assume that the

frequency ωs ≈ ωB (this can be motivated from the full numerical solution discussed above).

This means we can invoke the adiabaticity conditions introduced while discussing BZO in

an amplitude modulated lattice at the end of section 3.3. Therefore, the adiabatic Houston

solution for the modulated lattice introduced in section 3.3 (Eq. 3.27) is a valid solution to

our problem. The idea then is to use the Houston solution to evaluate the coupling integral

g2(t) at a given instant of time and then use it to solve Eq. 4.17 in a self-consistent manner

for the lattice depth s̃(t).

The Houston solution is given by :

ψ(z, t) = exp [i (q0 − λt) z] u(q(t),s(t))(z) exp

[

−(i/~)

∫ t

E(q(τ),s(τ))dτ

]

.

In our case the initial quasi-momentum q0 = 0. Another important thing to note is that

the self-consistent solution can only be found at discrete instants of time decided by the

Born-Von Karman boundary conditions, because in calculating the self-consistent solution

we use the Bloch evolved quasi-momentum vector:

q(t) = q0 − 2t . (4.18)

q(t) must still be an allowed wavenumber by Born-Von Karman boundary conditions, which
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means we have the BVK conditions for q(t) and q0 :

q0 = m2π/L (4.19a)

q(t) = m
′

2π/L . (4.19b)

Combining the above equations the allowed discrete time instants at which we calculate the

self-consistent solution are :

t = (m−m
′

)π/L with m,m
′ ∈ Z . (4.20)

We solve equation Eq. 4.17 only at such allowed value of t.
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Figure 4.4: Lattice depth as a function of time for
g2
0

δκ = 0.1 compared to the self-consistent
solution. The self-consistent solution is represented by the dots and the continuous line is
the full numerical solution. Other system parameters are same as the ones used in Fig. 4.3.
The self-consistent and full numerical solution are in good agreement.

This self-consistent solution for the lattice depth only needs to be evaluated over one

Bloch period since it is periodic by definition. In Fig. 4.4 the self-consistent solution is

compared to the settled down part of the numerical solution (the dots on the picture repre-

sent the self-consistent solution). We see that the numerical solution and the self-consistent

solution are in close agreement.

The next coupling value we consider is g2
0/ (δκ) = 0.5. We choose the initial lattice depth

s̃(0) = 5.526. This sets the following parameters, δ = −3.07×109 Hz, α(t = 0) = αi = 0.2644

and assuming the initial field is given by η/κ we get, η = 9.8× 105 Hz. With this setting we

start with a Bloch state in the initial lattice depth and we have plotted the lattice depth as

a function of time in Fig. 4.5.

As we had mentioned earlier we see that the transients at the beginning of the time
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Figure 4.5: Lattice depth as a function of time for
g2
0

δκ = 0.5, δ = −3.07 × 109 Hz and
η = 9.8 × 105 Hz . The initial lattice depth is s̃(0) = 5.526.
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Figure 4.6: Transient (short times) behaviour of the lattice depth for
g2
0

δκ = 0.5. This picture
zooms into the first full Bloch oscillation of Figure. 4.5.
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Figure 4.7: Self-consistent solution for the lattice depth for
g2
0

δκ = 0.5, δ = −3.07 × 109 Hz
and η = 9.8 × 105 Hz.
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Figure 4.8: Lattice depth as a function of time for
g2
0

δκ = 0.5 compared to the self-consistent
solution. The dots represent the self-consistent solution and the continuous line represents
the full numerical solution. In this case the parameters are same as in Figure. 4.5 but the
initial lattice depth is s̃(0) = 4.9. The full numerical results are in good agreement with the
self-consistent solution.

evolution are more pronounced for larger coupling (Fig. 4.6). Let us look at the adiabatic

solution for this coupling. Note that once we have chosen an initial wave function and a

value for the pump parameter η, the self-consistent solution ( Eq. 4.17 ) is independent of

what initial lattice depth you chose. This is evident from Fig. 4.7. On the other hand, as

we have already discussed for g2
0/(δκ) = 0.1, in the full numerical solution of the coupled

equations, the initial jump from the atom-less cavity field amplitude to the steady state

field amplitude causes transients to appear. The transients are an artefact of our choice of

the initial wave function as an eigenstate in the lattice depth s̃(0) = 5.526 whereas we can

see from Fig. 4.6 that the lattice depth quickly jumps to a smaller value. We can do away

with the transients by starting with an initial wave function that is a Bloch state in the

lattice depth obtained from the self-consistent solution at short times. To this end we start

our next simulation with all parameters same as above except, the initial lattice depth is

given by s̃(0) = 4.9 and the initial wave function is a Bloch function in this lattice with

quasi-momentum q = 0. This leads to suppression of the transients. We have compared

a solution obtained from these modified initial conditions to the self-consistent solution in

Fig. 4.8. We see good agreement between the two.

Let us examine the solution plotted in Fig. 4.9 (the case with initial lattice depth s̃(0) =

5.526) in more detail. In the top-most panel we have plotted the lattice depth as a function

of time over two BZO. We clearly see that apart from the overall Bloch periodicity there are

some fast oscillations. Also, a close examination of the self-consistent solution (Fig. 4.7) or

the full solution (Fig. 4.5) will reveal that even the shape of slow oscillations is not perfectly

sinusoidal with frequency ωB. This feature is confirmed from the second panel of the Fig. 4.9

where we have plotted the Fourier transform of the lattice depth (in all our Fourier transform
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calculations we subtract out the zero frequency component of the Fourier transform). In

this plot we see that not only the Bloch frequency but also its higher harmonics are also

present in the spectrum. The self-consistent solution manages to capture this feature which

is evident from its agreement with the full numerical solution (Fig. 4.8). This leads to the

conclusion that the higher harmonics of the Bloch frequency in the lattice depth spectrum

are a manifestation of adiabatic atomic back-action on the light field and may be viewed as

a form of amplitude modulation.

In the bottom-most panel of Fig. 4.9 the Fourier transform for higher frequencies is

plotted and we see a group of non-harmonic higher frequencies are present. These give rise

to the fast oscillations in the lattice depth seen in the top-most panel. Note that these

are not present in the self-consistent solution and are hence non-adiabatic in nature. The

reason for the appearance of these higher frequencies is that the energy level structure in

a periodic system is organized into bands. These higher frequencies are comparable to the

Band gaps in the steady state lattice depth. For example in a lattice depth s̃ = 4.865, the

gap between the ground band and the first excited band varies between 10.5ωB (between

q = 19/20 and q = 21/20 i.e. the gap at the edge of the band) and 22.9ωB ( between 0

and q = 2 i.e. at the centre of the band). This range of frequencies is comparable to the

non-harmonic higher frequency peaks we see in the Fourier spectrum of the lattice depth

s̃(t), depicted in the bottom-most panel of Fig. 4.9. Note that in the self-consistent solution

we model quasi-momentum dynamics by the Houston wave function and assume all our

dynamics is in a single ground band.

Although the higher non-harmonic frequency oscillations are an effect that can be traced

back to the fact that we are looking at dynamics in a periodic structure (we try to justify

this in the last section of this chapter), the fact that we start with an initial state not quite

in the ground band for the lattice depth obtained after the initial transients, enhances this

effect. To check this we have plotted the lattice depth as a function of time and the Fourier

transform in the Fig. 4.10 for the case where we start with a Bloch function in the initial

lattice depth s̃(0) = 4.9. Comparing Fig. 4.9 to Fig. 4.10 we see that the amplitudes of the

higher non-harmonic frequencies have been suppressed in the latter.

We continue our analysis by looking at what happens for a larger value of the coupling

parameter. We chose g2
0/(δκ) = 1.5. We chose the initial lattice depth s̃(0) = 12.52 (we have

chosen an initial lattice depth larger than what we had chosen for the previous lower coupling

values anticipating the fact that transients will lead to a jump from the initial value). This

means other parameters have the following values, δ = −3.07×109 Hz, initial field amplitude

αi = 0.2298 and from αi = η/κ, we have η = 8.52 × 105 Hz. As we have discussed before

starting with a Bloch state in the lattice depth s̃(0) = 12.52 causes transients. We solve the
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Figure 4.9: In the top-most panel the lattice depth as a function of time is plotted for two

Bloch periods for coupling
g2
0

δκ = 0.5, δ = −3.07× 109 Hz, η = 9.8× 105 Hz and s̃(0) = 5.526.
In the middle and bottom-most panel the Fourier transform of the lattice depth function
has been plotted (amplitudes in the Fourier transform s̃(ω) have been scaled by the largest
amplitude occuring at ω = ωB).
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Figure 4.10: In the top-most panel the lattice depth as a function of time is plotted for two

Bloch periods for coupling
g2
0

δκ = 0.5, δ = −3.07×109 Hz, η = 9.8×105 Hz and s̃(0) = 4.9. In
the middle and the bottom-most panel the Fourier transform of the lattice depth function
has been plotted (amplitudes in the Fourier transform s̃(ω) have been scaled by the largest
amplitude occuring at ω = ωB). Comparing the above figure to Fig. 4.9, we see that the
amplitudes of the non-harmonic higher frequencies have been suppressed in the former due
to the choice of initial wave function.
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Figure 4.11: Self-consistent solution for the lattice depth for
g2
0

δκ = 1.5, δ = −3.07 × 109 Hz
and η = 8.52 × 105 Hz.

self-consistent problem to determine the choice for our initial conditions. In Fig. 4.11 we

have plotted the self-consistent solution and see that at short times the lattice depth takes

the value 5.53. We start our simulations with the above parameters but with a Bloch state

with quasi-momentum q0 = 0 in a lattice depth s̃(0) = 5.53. The result of this simulation

is plotted in Fig. 4.12 and in Fig. 4.13, we have compared the lattice depth calculated

in this manner with the self-consistent solution. We see that the calculated value of the

lattice depth agrees well with the self-consistent solution. In summary, what we learn
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Figure 4.12: Lattice depth as a function of time for
g2
0

δκ = 1.5,δ = −3.07 × 109 Hz and
η = 8.52 × 105 Hz .The initial lattice depth is s̃(0) = 5.53.

from the above numerical results is that despite the intricacies of self-consistent amplitude

modulation, the Bloch acceleration theorem carries through and hence the Bloch frequency

ωB is the same as the one in a static lattice. We have verified that the fundamental Bloch

frequency is unaffected over a range of values of the coupling parameter g2
0/(δκ). We do not

present detailed results for other values of g2
0/(δκ) but in Fig. 4.14 plot the Bloch frequency

as a function of the coupling and see there is very little change in the value of ωB. Each

numerical data point in Fig. 4.14 was obtained in the following manner. A Fourier series
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Figure 4.13: Lattice depth as a function of time for
g2
0

δκ = 1.5 (other parameters are the
same as Fig. 4.12) compared to the self-consistent solution (represented by the dots on the
figure). The numerical and self-consistent solution agree well.
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Figure 4.14: Fundamental frequency, in units of ωB, calculated by fitting the lattice depth
to a truncated Fourier series is plotted as a function of coupling value. The fundamen-
tal frequency of modulation is the Bloch frequency for a range of values of the coupling
g2
0/(δκ)(The trend of increasing best fit values of ωB with g2

0/(δκ) is due to the truncation
of the Fourier series and has no physical meaning).
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expansion (truncated at the second harmonic) with fundamental frequency ω was fitted

to the lattice depth numerical data using the Mathematica RO function NonLinearRegress

[48]. This function calculates a least squares fit to the numerical data and gives the values

of the best fit parameters with a confidence interval. Each numerical data point with its

error bars gives the range of the best fit value for the frequency ω. The error bars become

negligible when you have a numerical data set that perfectly fits the form of the fitting

function used. In our numerical data sets, apart from the first and second harmonics of the

Bloch frequency we have higher harmonics and non-harmonic higher frequencies as one can

see from the Fourier analysis in Fig. 4.9. Hence, we have significant error bars. In spite of

this the fitting exercise shows that for a range of values of g2
0/(δκ) we have the fundamental

frequency of modulation as the Bloch frequency lending robustness to our scheme.

4.5 Non-Harmonic Higher Frequency Oscillations

In this section we will try to justify a statement we made regarding the non-harmonic high

frequency oscillations that were seen in the lattice depth calculations discussed in the last

section (in this section we use the term higher frequency oscillations to mean only the non-

harmonic frequencies and not the harmonics of the Bloch frequency which are adequately

explained by the self-consistent solution) . We stated that these higher frequency oscillations

have their origin in the fact that we are considering dynamics in a periodic potential. The

energy dispersion in a periodic potential is arranged into bands and the presence of higher

bands manifests itself as the non-harmonic higher frequency oscillations in observables. To

strengthen this argument and to examine the nature of these higher frequency oscillations

in some more detail, in this section we consider an atom in a stationary lattice (i.e. no

amplitude modulation) and moving under the influence of gravitational force. In the last

section we saw that the coupling integral, which is essentially the expectation value of the

potential energy of the atom 〈cos2(x)〉, was the quantity that decided the self-consistent

lattice depth. In this section we will examine the time dependence of this observable in a

stationary lattice. The hamiltonian we consider is H = p̂2

2M + s̃ cos2 x+ Fx. Let us call the

observable under consideration :

C2(t) =
g2(t)

g2
0

= 〈cos2(x)〉(t) . (4.21)

We will look at the effect of changing the lattice depth and the force term on C2(t). We first

state a summary of the results, followed by a more detailed discussion and some comments

on the physical reasons for the behaviour we see. In all the numerical simulations we start

with an atom in a given stationary lattice with an additional constant force. The initial
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Figure 4.15: Fourier transform spectrum of C2(t) for different lattice depth values. We see
that the higher non-harmonic frequencies observed increase as the lattice depths increases
in agreement with the fact that in a deeper lattice the band-gaps are larger.
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Figure 4.16: Fourier transform spectrum of C2(t) for different values of F and lattice depth
= 11.05. The force term decreases as we go from the top-most panel downwards. Although
the scale of the frequency axis changes for the different panels, we see that the absolute
value of the peak frequency (take to be the frequency value with largest Fourier amplitude)
stays the same.
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wave function of the atom is assumed to be a Bloch function with quasimomentum q = 0.

The main results are as follows :� The observable C2(t) is modulated mainly at the Bloch frequency but there are higher

frequency oscillations at frequencies that are not harmonics of the Bloch frequency.� At a given force value, when we increase the depth of the lattice we see that the higher

frequencies shift to larger values and their amplitudes become smaller.� At a given value of lattice depth as we increase the force term we see that the value

of the higher frequencies remain the same but the amplitude of the higher frequencies

increases.

Let us now describe the simulations in detail. The linear applied force we use is F = Mg,

the Bloch frequency is given by ωB = Mgd/~. In the first set of numerical solutions, we

changed the potential depth with a fixed F . The observable C2(t) was calculated over

10 Bloch oscillations and Fourier transformed. In all our Fourier transform calculations we

subtract out the zero frequency component of the Fourier transform. Looking at Fig. 4.15 we

see that as we increase the lattice depth, the value of the non-harmonic higher frequencies

increases. This agrees with our expectation that the excitations are due to higher band

effects since in deeper lattices the band gaps are larger. The amplitude of the non-harmonic

higher frequencies of the Fourier transform, which is related to the net change in C2(t) over

one oscillation, decreases for deeper lattices. This is because for deep lattices the band

dispersion becomes flat and the net change in observables, as the quasi-momentum evolves

in the band, is small. Another way to state this fact is to appeal to the tight binding limit

which is the right description for very deep lattices. In this approach the periodic part of

the Bloch function (writing Bloch functions as φk(x) = eikxUk(x)), Uk(x) does not change

as the quasi-momentum evolves within a band. This means expectation values, like the one

we are considering, remain constant in time.

Next we consider Fig. 4.16 where the Fourier transform of C2(t) for a given lattice depth

(s̃ = 11.05) and three different values of the applied force F has been plotted. The Bloch

frequency changes from top panel to the bottom panel as follows, 2ωB, ωB and ωB/2. The

figures show that the frequency at the peak is unchanged. The value of frequency for which

the Fourier amplitude is largest is picked as the frequency at the peak. In the first figure it

occurs at the frequency 12.9 × 2ωB, in the second it occurs at 23.9 × ωB and in the third

it occurs at 46.8 × ωB/2. The frequency at the peak for the three different values of force

namely F = Mg/2, F = Mg and F = 2Mg do not share the exact expected relation of

1/2:1:2. This can possibly be due to the fact that there are a bunch of closely spaced peaks

in Fig. 4.16 and the way we picked the frequency at the peak was simplistic.
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The force term F is decreasing from the top to the bottom panel and we see that the

amplitude of the high frequency oscillations also go down but their frequency remains the

same.

The next step is to compare our results with previous studies of BZO that observed such

non-harmonic higher frequencies. Since the two references we discuss, A.M. Bouchard and

M. Luban [50] and P. Abumov and D.W.L. Sprung [51], consider BZO in semiconductor

superlattices let us introduce a few terms that are used in them. The net drop in potential

energy due to the force term per one lattice period is known as the bias, which has the

value Fλc. Another parameter that plays an important role is the band width of the

lowest band, call it ∆W. This is important because the band width is the length in energy

space covered by the quasi-momentum during a BZO. In a tight-binding lattice model the

energy dispersion is modelled by E(k) = −∆W
2 cos(kcd). The next important parameter

is the band-gap ∆E. For our analysis we consider only the band-gap between the lowest

band and the first excited band. Finally we can model the individual lattice sites (at the

bottom of the wells) as a harmonic oscillator and the effective harmonic frequency at the

bottom of the wells is given by ωho = 2ER

√
s̃

~
, where ER = ~

2k2
c/ (2M) is the atomic recoil

energy. In Table. 4.1 we compare the peak of the higher frequency oscillations observed in

Fig. 4.15 for different lattice depths with the band-gap frequency and harmonic frequency.

These frequencies are comparable lending credibility to our earlier arguments that we are

observing higher band effects.

The energy structure of a lattice is responsible for two slightly different phenomenon,

each of which can give rise to high frequency oscillations. The first effect is Zener tunneling.

This describes the tunneling probability of the atom between bands (originally discussed by

[1]) and the probability of such a tunneling event between bands seperated by ∆E is given

by :

γ = exp(−mλ
2
c

4~2

∆2
E

Fλc
) . (4.22)

This phenomenon is significant when the ratio Fλc/∆E is large. This is definitely not the

regime we are in, as is evident by looking at Table 4.2. It is also interesting and obvious to

note that the ratio Fλc/∆E is nothing but the inverse of the bandgap frequency in units of

Bloch frequency, which as we already noted is comparable to the high frequencies in C2(ω)

spectrum.

The other phenomenon that can give rise to higher frequency oscillations, discussed by

[50] and [51], are the intrawell oscillations. This is basically sloshing around of the wave

function inside the individual wells of the lattice [50]. Ref [50] states that the regime for

which intrawell oscillations become important are when the ratio of bias Fλc to the band
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Table 4.1: Comparison of non-harmonic higher frequency peaks observed in Fig. 4.15 with
other relelvant frequencies namely the band-gap between the ground and first excited band
∆E and the harmonic frequency ωho.

LatticeDepth Peak(from C2(ω)) ∆E/~ ωho

5.52 16.5 15.51 20.8

11.05 23.9 23.87 29.47

16.57 31.8 30.77 36.1

19.34 34.8 33.77 38.9

width ∆W is large but the ratio of bias to band gap ∆E is still small i.e. away from the Zener

tunelling regime. Again looking at Table. 4.2, we are in such a regime and the validity of

this regime increases as we increase the potential depth. This is because the dynamics in

each well of the lattice becomes independent, for deep lattices.

Table 4.2: Correlation between bias to bandwidth ratio (Fλc/∆W), bias to band-gap ratio
(Fλc/∆E) and non-harmonic higher frequency values at the peak ((the frequency value with
the largest Fourier amplitude)) and their amplitude.

Lattice Depth Peak Frequency Peak Amplitude (Fλc)
∆W

(Fλc)
∆E

5.52 16.5 0.015 0.98 0.06

11.05 23.9 0.011 3.73 0.041

16.57 31.8 0.002 11.84 0.032

19.34 34.8 0.0014 20.04 0.029

Ref [50] model intrawell oscillations by considering individual wells as finite length con-

stant potential boxes with infinite potential energy boundaries. They start with a superpo-

sition of Wannier wave functions (which are onsite localised wave functions got by Fourier

transforming the Bloch functions) in the ground and first band. They look at the 〈x〉 for

such a wave function and see oscillations in this observable at the frequency E1−E0
~

where

the energies are the energy levels in a box. They also add that using E1 and E0 as the

average band energies of the bare lattice also gives them the right intrawell oscillation fre-

quency. In comparison we start with a Bloch state in the lowest band (which is a linear

combination of Wannier states from different wells). We calculate < cos2(x) > and observe

high frequency oscillations with frequency values close to the band-gap frequencies. Thus it

seems likely that we are also observing an effect due to intrawell oscillations. The observable

C2(t) = g2(t)/g2
0 goes into determining the steady state solution (Eq. 4.13) for the lattice

depth in the amplitude modulated BZO case. We emphasize again that in the Fourier spec-

trum of the lattice depth as a function of time (Fig. 4.9) we observe two features. There

are higher harmonics of the Bloch frequency that are well explained by using the adiabatic

self-consistent amplitude modulation described in Eq. 4.17 which takes the atomic back

action on the field into account. Apart from this there are non-harmonic higher frequencies
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observed and they are comparable to the band gaps in the energy spectrum. Similar non-

adiabatic effects are also observed in the observable C2(t) for BZO in stationary lattices as

discussed above. Hence we conclude that the non-harmonic frequencies are related to the

intrawell oscillations phenomena considered for the stationary lattices.

Thus, we see from the numerical solutions that the field amplitude and phase are mod-

ulated at the Bloch frequency. The calculated self-consistent solution for the lattice depth

captures the main feautures of the full numerical solution namely the modulation at Bloch

frequency and the presence of higher harmonics of the same. It fails to explain the higher

non-harmonic frequencies which we understand as a phenomenon of intrawell oscillations.



Chapter 5

Experimental Details

5.1 Introduction

In the second section of this chapter we give an overview of the various experiments that have

already been proposed to study BZO of cold atoms. The main feautures of the experiments

and also the limitations that they face are described. In the third section a rough schematic

of the experiment we propose is explained.

5.2 BZO Experiments

In this section we will need some of the definitions used in the earlier chapters for the

experimental parameters. kc denotes the wavenumber of the standing wave field experienced

by the atom, ER = ~
2k2

c/ (2M) denotes the atomic recoil energy, s̃ denotes the lattice depth

in units of ER and Γ the width of the atomic level.

The general procedure in cold atoms experiments aiming to study BZO consists broadly

of the following stages. The first step is to cool atoms from room temperature down to

very low temperatures (ranging from microKelvins to nanoKelvins depending on whether

one wants to make a BEC or not). A variety of techniques are used to achieve this cooling

and details can be found from the references [9, 52, 53]. Once the atoms are cooled down,

they are transferred to the optical lattice potential, which is in general created by the

interference of two counter-propagating laser beams. The process from here on allows the

atoms to evolve in the optical lattice with a constant force, which can either be a naturally

occuring inertial force like gravity or a non-inertial force created by chirping the frequencies

of the two lasers that create the optical lattice. The optical lattice is then switched off after

different holding times in the lattice and the atoms are allowed to ballistically expand. After

this they are destructively imaged using a weak resonant probe that casts a shadow of the

41
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atomic distribution, which is captured using a CCD camera. This gives information on the

position space atomic distribution at the time of imaging which can be used to map out the

initial momentum space distribution. This measurement process is called a time-of-flight

measurement.

The first experiment to observe BZO in cold atoms was reported by M.Ben-Dahan

et al., in [5]. Some of the points made in this work are very relevant to our proposal

too. The group used ultracold cesium atoms, with atomic transition wavelength λ0 =

852 nm and width Γ = 2π × 5.3 MHz . The lattice frequency was detuned from the atomic

frequency by δ = 2π × 30 GHz. The depth of the lattice was varied between 0 < s̃ < 6

with the recoil energy ER = h · 2.068 kHz. Since most of these experiments were in the

far-detuned limit, spontaneous scattering of photons was very small. Neverthless, a single

spontaneous emission event could impart a momentum recoil as large as the Brillouin zone

momentum (given by 2~kc) of the lattice and hence affect Bloch dynamics. Thus, it becomes

imperative to compare the spontaneous emission rate to the time scales over which BZO are

measured. In their case the scattering rate Γsc ≈ 4 s−1, which can be totally neglected for

their observation time scale that is of the order of 1 ms. They mimiced a constant external

force by introducing a tunable frequency difference δν(t) between the counter-propagating

lattice beams. The reference frame in which the optical potential is stationary moves with

a velocity of δν(t)λc/2 and for a linear variation in time of δν(t) a constant inertial force

F = −ma = −mλc
d
dtδν(t)/2 is exerted on the atoms. The ranges of acceleration considered

in the experiment are 0.43ms−2 < a < 12.2ms−2.

One important observation that they make concerns the loading of the cooled atoms into

the optical lattice. Since they wanted the atoms to occupy the ground state of the lattice,

they have to switch on the lattice potential adiabatically and prevent transitions to higher

bands in the process. This is also relevant to our case, where we should make sure that

the switching on of the single-mode field inside the cavity does not cause excitations to a

higher band (although in an alternate scenario we can imagine cooling the atom inside the

cavity [54]). Another relevant point in the experiment was the choice of the initial state for

the atoms in the lattice. In our theoretical analysis of the problem in the previous chapters

we assume we always start with a single Bloch wave with a well defined quasi-momentum

q (a picture of a Bloch wave with q = 0 in momentum space is shown in Fig. 5.2). In an

actual experiment one starts with a narrow distribution in quasi-momentum space (look

at Fig. 5.3) and the central quasi-momentum evolves according to the Bloch acceleration

theorem (Eq. 3.17). In Fig. 5.1 we plot the Bloch evolution of an initial Gaussian state in

quasi-momentum space centred at q = 0 and standard deviation kc/9. In the experiment

[5] they started with a Bloch state around q=0 and width given by kc/18 which is much
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Figure 5.1: Time evolution in momentum space of a wave packet with a narrow distribution
in quasi-momentum space. Bragg reflection occurs at t = TB/2
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Figure 5.2: Momentum space distribution of a Bloch function for a lattice depth s̃ = 4 and
q=0.
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Figure 5.3: Momentum space distribution for a gaussian distribution in quasi-momentum
space around q=0 for a lattice depth s̃ = 4.

less than the width of a Brillouin zone (2kc). Theoretical analysis of the experiment was

carried out by dividing the initial momentum distribution into channels centered around

different quasi-momentum. Bloch evolution was assumed for each of the channels and the

contributions of different channels were combined to obtain the mean atomic velocity. This

method agreed well with their experiment. This means that our theoretical study carried

by using a single Bloch wave initial state can be extended in the same manner to explain

results from the proposed experiment.

The next experiment we consider is the one by Anderson and Kasevich [6]. In this

experiment a BEC 87 of Rb atoms (transition wavelength λ0 = 780 nm) was used in a

vertically oriented optical lattice (wavelength of light λc = 850 nm i.e. detuning δ ≈ 2π ×
31.7 GHz). The Zener tunneling probability of atoms in a lattice is maximum when the

momentum is close to the band edges. During a BZO the atomic momentum periodically
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approaches the band edges and hence one gets increased tunneling periodically. In this

experiment shallow lattices (s̃ = 1.4) were used to enhance Zener tunneling. They observed

pulses of atoms, by destructively imaging them, leaving the vertical lattice periodically

after Zener tunneling (at the Bloch period). This helped them to measure TB and hence the

value of acceleration due to gravity. The maximum holding time in the lattice they consider,

was of the order of 50ms which was much less than the time scale at which off-resonant

spontaneous scattering is important.

In [24], Morsch et al., used 87Rb condensate atoms in an optical lattice. After a finite

amount of interaction time the lattice was switched off and the atoms were destructively

imaged. Repeating this process for different amounts of interaction time they mapped

the expectation of atomic velocity as a function of time and saw that it had an oscillatory

structure at the Bloch period TB . One important feature required for the observation of BZO

in cold atom systems is a sufficiently narrow distribution in quasi-momentum space which

will result in a well resolved peak structure in momentum space. Interatomic interaction

in BECs quickly broadens the distribution in real momentum space, as opposed to quasi-

momentum space (if interactions are significant, the initial momentum space distribution

will also be broad). This makes it difficult to observe more than a few oscillations. The

experiment of Morsch et al. aimed to address this issue by trying to verify the claim that the

effect of interactions is to modify the lattice depth seen by the atoms [55]. They accelerated

the lattice by chirping the standing wave lattice lasers. The spontaneous scattering rate

of 10 s−1 was insignificant since the interaction times of the atoms and the lattice was of

the order of milliseconds. The lattice depth they used was s̃ = 11.04 (the atomic level and

laser light were detuned by 28−35 GHz) and the acceleration values they used is 0.94ms−2.

Apart from this they also used shallow lattices to observe Zener tunneling and used that to

estimate the effective potential due to the interactions in a BEC.

The next experiment we discuss is by G. Roati et al. [25]. There are two main limitations

of observing BZO by a momentum space study of BEC atoms. The first one is the fact

that interactions broaden the distribution and lead to loss of contrast. The second related

problem is that using deeper lattice depths to prevent Zener tunneling increases atomic

density in the condensate, leading to enhanced interaction. In this experiment this problem

was avoided by using ultracold Fermions where the Pauli principle suppresses collisional

interaction at low temperatures. They used ultracold 40K atoms sympathetically cooled

(close to the Fermi temperature TF ) using 87Rb atoms. The atomic transition line used was

λ0 = 873 nm and the lattice depths ranged from 1-4 ER and the constant force was gravity.

The initial state of the ultracold atoms had a width of 0.75kc and was in the lowest band of

the lattice. They provide an interferometric interpretation to the observation of BZO. The



CHAPTER 5. EXPERIMENTAL DETAILS 46

eigenstates of a combined periodic and gravitational potential are the Wannier-Stark (WS)

states [56]. The defining feature of WS states are their ladder energy structure separated by

∆̃E = Mgλc/2. The initial state in their experiments was closer to a Bloch state and hence

can be thought of as a coherent superposition of different WS states. Because of the energy

difference, neighbouring states evolved in time with phase difference ∆φ = ∆̃Et/~ and

their interference pattern was periodic in time with period TB = h/∆E. They studied the

momentum distribution of the atoms by the time-of-flight techniques described earlier and

tracked the peak position of the momentum distribution for about 110 Bloch periods. This

is significantly more than the number of oscillations seen for BECs and they showed that

the momentum distribution of BEC atoms broadens more quickly than the distribution

for the Fermi atoms. They discuss the application of such a measurement to measuring

gravitational forces with high spatial resolution. The spatial extent of the atoms in the

lattice depends upon the width of the Wannier-Stark state which goes as ∆W/F , wher ∆W

is the band width and F is the force. They note that in a tighter lattice the vertical extent

of the atom can be made small since ∆W is smaller. One important observation they made

was that, although having a tighter lattice suppresses Zener tunneling and/or confines the

atoms, it can have an unwanted effect that any intensity gradient along the axis of the

optical lattice will produce extra forces that will hamper a precision measurement. Other

sources that contribute to broadening the momentum space spectrum include intensity and

phase noise in the laser beams.( Collisional loss sources due to p-wave collisions in Fermions

have a characteristic time of 100 s for their samples making it insignificant on the interaction

time scales considerered.)

The next experiment we discuss is the one by G. Ferrari et al., [28]. Their aim (to

measure gravity at the micrometer scale) is very close to our aim and the experimental setup

for our proposal will share some similarities. They used ultracold 88Sr atoms (transition

wavelength λ0 = 461 nm) in a vertically aligned optical lattice (so the force is gravity)

with lattice wavelength (λc = 522 nm). The optical lattice was created by using a single

laser retro-reflected by a mirror. We note that this is similar to the way a single mode is

created in an optical cavity. In a precision measurement using ultracold atoms, one source

of noise/broadening is the interaction of the atoms with stray electromagnetic fields. 88Sr

atoms have zero orbital angular momentum and nuclear spin in their ground state, which

means they are less affected by stray electromagnetic fields. They also have remarkably

small atom-atom interactions meant that collisional broadening is minimal. They make an

interesting point on the choice of lattice depths. Their argument against very large lattice

depths (high intensity beams), is that this will reduce the amplitude of oscillation of the

mean momentum, making it difficult to measure BZO. On the other hand an increased
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intensity will mean larger confinement in the radial directions preventing loss of atoms and

hence a depth of s̃ = 10 was chosen balancing the two effects. Thousands of BZO up to

a total time of 12 s, using time-of-flight measurements and absorptive imaging techniques

described earlier, are observed. The imaging data was used to calculate the peak momentum

and the width of the momentum distribution as a function of time. From the data the Bloch

period was calculated as TB = 574.568Hz, which gave the value of acceleration due to gravity

as g = 9.80012(5)ms−2 (sensitivity of 5×10−6g). Another source of decoherence, which was

relevant to their setup, was the vibrations of the retro-reflecting mirror. It is observed that

the collisions of the ultracold atoms with the hotter background vapor pressure inside the

cooling MOT trap reduces the signal to noise ratio but does not affect the coherence of

the atomic distribution. For the sake of comparison we note that the absolute gravimeter

measurements on the website of NGS Geosciences Research Division, USA [57] claim an

accuracy of 1 part per billion of g or more precisely 1.1 × 10−8g.

In the concluding part they talk about using this setup to measure deviations from Newton’s

law. The idea of investigating short range gravity with atomic probes was discussed first by

[58] and later by [23] and preliminarily demonstrated by [59]. Deviations from Newtonian

law can be described by using a phenomenological potential to describe gravity [23] :

V (r) = −Gm1m2

r

(

1 + βe−r/λ
)

, (5.1)

where β gives the strength of the deviation from Newton’s law and λ gives the spatial range

of the deviation. Recent results using microcantilever detectors [62] (discussed in more detail

at the end of the section) lead to extrapolated upper limits of β ≈ 104 for λ ≈ 10µm, but

for distances below 10µm direct measurements have not been performed. Ref. [28] propose

to use a thin sheet of a high density material as the source producing the gravitational field

that the atomic cloud moves in. This source can be placed very close to the atoms. The

small size and high sensitivity of the atomic probe allows it to access shorter ranges without

the need to extrapolate as in the case of macroscopic probes. A material of density ρ and

thickness t0, gives Newtonian gravitational acceleration of a = 2πGρt0. For t0 ∼ 10µm and

ρ ∼ 20 g/cc (e.g. gold or tungsten), the resulting acceleration is a ∼ 10−10 ms−21. Thus,

measuring the Bloch frequency at 10µm will provide a check on the extrapolated values

of β and λ obtained from cantilever experiments. Non-gravitational effects (surface forces

like van der Waals and Casimir forces) can be reduced by using conductive screens and also

repeating experiments with different source masses. Using isotopes of Sr having different

masses will again distinguish gravity from the other surface forces.

1Deviations from this Newtonian acceleration can take large values as we will see later from the discussion
of cantilever experiments and hence can be detected independent of the very small Newtonian force
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Another interesting proposal by I. Carusutto et al., in [29], concerns the measurement

of the Casimir-Polder(CP) force near a dielectric surface. They consider the use of spin

polarized cold Fermi atoms in a vertical optical lattice. The idea is to use the deviation

of the Bloch frequency, from its value in Earth’s gravitational field, due to the presence

of the CP force near the surface. They want to measure the CP force with very high

spatial resolution. Hence, the real space amplitude of the BZO is required to be small.

This amplitude has an order of magnitude ∆W/F where 2∆W is the band width and F is

the constant force. The presence of a larger force like gravity reduces this amplitude and

increases the spatial resolution and makes it easy to detect the deviations which contain the

value of the CP force. This proposal serves to illustrate the variety of measurements that

can be performed with a simple central idea, that of BZO.

We end this section with a description of macroscopic experiments that aim to probe

gravity at short ranges (a good review of the subject is available in [60]). The general idea

in such experiments is to measure the gravitational interaction between two test masses

(macroscopic objects that have small dimensions) at very short distances. One of the masses,

called the detector, is usually a cantilever and other test mass is called the driving mass,

since it is driven at a frequency close to the resonance frequency of the detector mass. The

gravitational interaction between the masses, modelled as in Eq. 5.1, is expected to show

up as a resonant signal from the test mass motion.

To be more specific we consider two recent experiments in this area. The first experiment

we consider was done by the group of John Price at Colorado [61]. In their experiment

the test masses were planar in geometry which helped to concentrate most of the mass

density at the length scale of interest. As they note, the flat plates are nominally a null

geometry with respect to 1/r2 forces, which is important for suppressing Newtonian forces

relative to short-range effects. The source mass consists of a 35 mm × 7 mm × 0.305 mm

node-mounted tungsten reed. This source mass was driven at its second cantilever mode,

whose frequency was matched to the resonance frequency of the detector mass using a

piezoelectric transducer (a device that converts an electrical input into a mechanical output).

The detector mass was a 0.195 mm thick tungsten torsional oscillator. A stiff conducting

shield suspended between the test masses suppresses electrostatic and acoustic backgrounds.

The shield limited the minimum separation between test masses to 100 microns. With the

help of some standard techniques, like the use of vacuum bell jars, background noise due to

acoustic, electromagnetic sources were suppressed. The only limiting factor in the end is the

thermal noise due to finite temperature (305 K in their case). The motion of the detector

mass was converted to a electric signal using a capacitive transducer. In their data the signal

observed agreed well with predictions from thermal noise and no deviation larger than the
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thermal noise was detected after 22 hours of integration time (as they observe in [60], this

corresponds to a force sensitivity of about 10−15 N). To set limits on the parameters β for

different λ in Eq. 5.1, they equated the deviation expected due to resonance interaction as

a result of the Yukawa type force to the thermal noise observed. Apart from this, to take

the precise geometry and the systematic error into account, the non-Newtonian Yukawa

type force between the test masses was computed numerically and constraints on β was

calculated using a maximum likelihood technique. From their methods they have obtained

a limit of β ≤ 10 for λ ∼ 100µm and β ≤ 108 for λ ∼ 10µm.

The second experiment we discuss was carried out by the group of A. Kapitulnik at Stan-

ford [62]. The idea in this experiment was, as in the previous experiment, to measure short

range gravitational forces between masses with sizes comparable to the separation desired.

The detector mass in this experiment was a gold prism (50×50×30µm3) placed on a silicon

cantilever (5µm wide). The drive mass, comprised of a gold meander pattern embedded in

a silicon substrate creating an alternating pattern of gold and silicon bars, was mounted on

a piezoelectric bimorph at a vertical distance of 25µm. The value of the vertical separation

was limited in part by the presence of a stiff silicon nitride shield to reduce electromagnetic

fields between the masses. The driving mass was oscillated along the horizontal direction,

while the vertical separation was maintained, using the piezoelectric morph at a subhar-

monic of the resonant frequency of the test mass cantilever. The differing mass densities of

gold and silicon bars on the driving mass sets up an alternating gravitational field at the

detector mass. The motion of the cantilever on resonance was measured using a fiber inter-

ferometer and the force between the masses was deduced from this. Thermal noise provided

a limit on the measurements of cantilever motion. This was reduced by using cantilevers

with small spring constants and high quality factors in vacuum. In a cryogenic set up with

temperatures around 10 K the thermal noise limit was approximately 2.5 × 10−16 N/
√

Hz.

The separation of the signal frequency from the drive frequency, the shield between the

masses, and the use of non-magnetic test masses for the measurement reduced the effect of

other possible backgrounds. The geometry of the driving mass, with alternating gold and

silicon bars, provided an important degree of freedom that helped to distinguish between

true gravitational coupling and other backgrounds. The force on the detector bar was mea-

sured for different mean horizontal positions of the driving mass. Since the gold and silicon

bars each had a length of 100µm, the force at the detector mass was expected to be a

periodic function of the mean horizontal position. The data collected for the force had this

apparent periodicity and was slightly larger than the approximate level of thermal noise.

The numerical data for the force was fitted to a Yukawa type force to obtain best-fit values

for the parameters β for different λ. The small size of the measured force combined with
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the fact that the thermal noise was comparable to the measured force led them to conclude

that their observation is not conclusive evidence for the fact that they observe gravitational

interaction. They have also observed that for a complete test of such short range forces, the

separation between the test masses (fixed at 25µm for their case) needs to be varied. Due

to these reasons they use the data to set upper limits on the possible values of the Yukawa

strength β for different ranges λ. For a λ ∼ 10µm they obtain β ∼ 104. As Ref.[23] observe,

one significant advantage of using an atomic system like Ref.[28] or the proposal we make

in this thesis, comes from the fact that one can directly probe very short length scales that

are relatively tough to probe using macroscopic systems that were discussed above.

The different experimental papers discussed in this section put our proposal in perspec-

tive. In the next section a rough schematic of our setup is discussed and in light of the above

experiments the issues that could be important in a practical realisation of the proposal are

examined.

5.3 Experimental Schematic

We have in Fig. 5.4, a sketch of the schematic for our proposal. We consider one dimensional

dynamics of a single cold atom in a fiber optic cavity. The cavity is created by using a pair of

optical fibers, each with an integrated Bragg reflector (the cavity configuration is described

in [45]). The driving laser which sustains the electromagnetic mode in the cavity enters

through one of the fibers. The other fiber passes through a hole drilled into a disc (uniform

otherwise), made of a dense material like gold, and the fibers are aimed at each other with a

small gap in between; this gap will act as the cavity. The signal from the cavity is collected

at a detector placed below the fiber that passes through the source mass. By using a beam

splitter, as shown in the schematic, we use part of the incoming laser signal as the local

oscillator that is compared to the signal. Although there are more loss sources from the open

cavity setup (we have not included such losses in our idealised theoretical model discussed in

the previous chapters), it has the advantage that it is easy to build and the mode structure

can be analysed readily (see the Appendix in [45]). The fiber core has a diameter of 5µm

and the gap between the bragg reflectors is of the order of L ∼ 10−2 m. The gap between

the fibers for the value of κ (cavity linewidth) and g0 (the dipole coupling constant) we used

in our simulations, comes out as 2l ∼ 1.563µm. The radius of the fiber core is 5µm and the

waist size of the mode is on the order of 1-2µm.

The source mass has a thickness of t0 ∼ 10µm and has a radius much greater than

the radial extent of the cavity. So the newtonian gravitational field at the cavity, which is

assumed to be along the axis, due to a disc can be calculated as follows. Call the distance
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Figure 5.4: Schematic of the proposed experiment, I-incident laser beam; B1 beam splitter,
M1 and M2-mirrors, t0 = 10µm-source mass thickness, r-atom-source mass separation ∼
µm, 2l ∼ 1.5µm- size of the gap between the fiber ends/cavity length, L ∼ 10−2 m-distance
between the bragg reflectors inside the fiber and the fiber ends.
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Figure 5.5: Gravitational field along the axis of an uniform disc.

between the disc and the cavity r and the radius of the disc R. For a uniform disc (we

will account for the hole through which the fiber passes later), the Newtonian field can be

written as an integral over concentric rings. The surface mass density of the disc is given

by σ = ρt0, where the volume density ρ ∼ 20 g/cc for gold. Referring to Fig. 5.5, we write

down the acceleration due to the disc as (due to symmetry all the field will be in the vertical

direction) :

a =

∫ R

0

2πGσ cos θ

p2
y dy (5.2)

= 2πGσr

∫

√
r2+R2

r

dp

p
. (5.3)

We assume that the separation between the source mass and the cavity r (∼ µm) is much

smaller than the radius of the disc R (∼ mm). Therefore the net Newtonian acceleration is

given by:

a = 2πGρt0 −
2πGρt0r

R
. (5.4)

The first term is the gravitational field due to an infinite disc. In the limit R ≫ r, the

second term is negligible. The presence of a hole in the disc will reduce this field. The

radius of the hole is ǫ ∼ 5µm (radius of the fiber core). From the second term of Eq. 5.4,

we can see that the contribution of a finite disc goes as the inverse of its radius. Thus, the

relative contribution of the missing piece due to the hole goes as ǫ/R ∼ 10−9, which is very

small. For the gravitational field due to a finite disc, at a point not on the axis, we refer to

[63]. We assume that the Newtonian field due to the disc at the cavity is given by the first
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term in Eq. 5.4 for the rest of the discussion.

For t0 ∼ 10 µm and ρ ∼ 20 g/cc (e.g. gold or tungsten), the Newtonian gravitational

acceleration is a ∼ 10−10 ms−2. The spatial extent of the (delocalised) atom along the cavity

axis is set by the number of sites it occupies in the periodic potential. We have assumed

this is on the order of 40 sites in our simulations giving a extent on the order of 10−1 µm.

Hence, r can be defined as the separation between the atomic center of mass in the cavity

and the source mass. We choose r ∼ 10µm. By measuring the Bloch frequency for different

values of r we can determine if there is a deviation from the Newtonian gravity values that

we expect from the earlier calculations. These deviations can be modelled using the Yukawa

form (Eq. 5.1) and this experiment will provide a direct check on the upper limits of the

parameters β and λ set by earlier cantilever experiments [61, 62]. In our simulations, we

used a vertically oriented cavity and the only force was gravity given by F = Mg. In the

experiment the cavity can be oriented in two ways. When vertically oriented, the force

due to the source mass will appear as a correction to the Bloch frequency due to gravity

(see from above that a ≪ g). The presence of a large background force like earth’s gravity

can improve the sensitivity of the experiment as pointed out in the end of last section [29].

Another possible orientation for the cavity is in the horizontal direction where the only force

will be that due to the source mass.

The next challenge for the experiment is to load a single atom into the cavity. Trapping

a single atom in a high finesse cavity has been achieved by [65] and [64]. As previously noted

in Chapter 4, extremely high finesse cavities would affect the adiabaticity arguments where

it is assumed that the cavity bandwidth κ is larger than the Bloch frequency. Hence cavity

finesse, which determines κ, has to be chosen suitably. The basic idea in such a process

will be to first create a source of cold atoms, generally in a MOT trap. This will then drop

atoms into the cavity at very slow speeds so that at most one atom passes through the

cavity at a given time. In [65] they used a novel feedback technique to increase the intensity

of the cavity mode when an atom passes by and this in turn helps to hold the atom in the

cavity (they obtain approximate trapping times of 0.25ms with this technique). The cavity

bandwidth used in [65] is κ = 2π× 1.4MHz which is of the same order of magnitude as the

value we used in our numerical simulations. Another method to load atoms into a cavity

is by building a “conveyor belt” made of light (i.e. a moving optical lattice) for atoms that

carries them into the cavity. This has been described in the paper by D.Schrader et al.,

[66] .

There are two important advantages that this proposal has in comparison to the experi-

ments discussed in the last section. The first advantage is the fact that since one is in a single

atom situation broadening of the momentum distribution due to interactions is not an issue
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(although interaction effects can be suppressed by using degenerate Fermionic atoms, the

momentum spread of the degenerate gas, 2~kF is not negligible). The next key advantage

is that destructive imaging of the atom to observe BZO is not needed. The observable in

our case is the transmitted light from the cavity. The measurement scheme we propose is

continuous. This means we can perform a frequency measurement to high accuracy. This

is very different from the ballistic expansion measurements where the experiment has to be

re-run for each data point.

Although the continuous measurement process in principle will allow the observation of

a large number of BZO, in practice we expect incoherent scattering of photons, that can

knock the atom out of the cavity, to limit the observation time. Apart from the incoherent

scattering event that can kick the atom out of the cavity, the momentum diffusion of the

atom can cause heating which will also affect the signal. The fluctuating nature of the dipole

force on the atom and the quantum nature of the field manifested by spontaneous emission

of photons are sources of diffusion for an atom in a standing wave light field independent of

the cavity [67]. The dissipative nature of the cavity (as seen from the linewidth κ) gives an

extra source of diffusion [68]. One future direction of our research is to understand diffusion

in an optical cavity and estimate its impact on our proposal.

We next estimate the scattering rate due to spontaneous emission. Comparing the

atomic recoil momentum due to this scattering event with other relevant momenta in the

problem will give an idea of the effect of an emission event. To this end consider first the

recoil momentum,

pR = ~kL = ~kc (5.5)

where kc, the cavity mode wave vector, is equal to kL, since the driving laser and the cavity

mode are on resonance. Now the periodicity of the potential is given by V (x + d) = V (x)

with d = π
kc

and thus the width of a Brillouin zone is :

kBZ = 2kc. (5.6)

Another important momentum scale is the width of the wave function in momentum space.

Consider the initial wave function, which in the theoretical analysis of the previous chapters

is taken to be a Bloch function. For a Bloch function χq(x) with quasi-momentum index

q, the quasi-periodicity (i.e. we can write χq(x) = eiqxuq(x) such that uq(x + d) = uq(x))

implies that the Fourier expansion can be written as :

uq(x) =
∑

K

cq+Ke
iKx, (5.7)
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where the only non-zero Fourier coefficients occur at intervals of K, the reciprocal lattice

vector, which is of the same length as the Brillouin zone. Hence the width of the wave

function for the lattice depths we consider is at least K = kBZ = 2kc (in fact for the lattice

depths we consider the width is of the order of 2kc).

Comparing equations Eq. 5.5 and Eq. 5.6 we see that the recoil momentum is of the same

order of magnitude as the other momentum scales in the problem. This means a single

spontaneous emission event can affect the system significantly. Let us now estimate the

scattering rate for the parameters we chose in the simulations. The scattering rate for the

spontaneous emission process is given by (Eq. V.C.11 in Cohen-Tannoudji’s book [34])

Γsc = Γσst
22 (5.8)

where σst
22 is the steady population of the excited state and Γ is the spontaneous decay

coefficient. Substituting the value of σst
22 we get

Γsc = Γ
Ω2

1

4
(

δ2 + Γ2/4 + Ω2
1/2
) (5.9)

The Rabi frequency Ω1 is related to the single photon dipole coupling g0 and the mean

photon number in the cavity α∗α, by Ω2
1 = 4g2

0N = 4g2
0α

∗α (Eq. V I.B.18 in [34]). The

order of magnitude of Ω1 for our parameters is 107 and Γ is of the order of 106 whereas the

detuning δ is of the order of 1010. Thus smaller terms in Eq. 5.9 can be neglected and the

expression simplifies to :

Γsc ≈ Γ
g2
0N

δ2
. (5.10)

Substituting the values used in the simulations, Γsc ∼ 1.3 and the number of Bloch oscilla-

tions that can be observed before this time scale becomes important is :

n = Γ−1
sc /TB ≈ 600.

Note that the above number is very specific to the parameters of the simulations. It should

be possible to find a suitable parameter regime (in some of the experiments the values of

Γsc was on the order of 10 s) so that this number is larger.

Since we are making a precision measurement of the gravitational force, the effect of

other stray sources must be reduced or eliminated. Such sources include surface forces due

to the source mass (like the Casimir Polder force discussed in the last section) and intensity

gradients along the axial direction in the standing wave field. One way to take care of such

forces is to perform the experiment with different isotopes of the same atom. In this manner
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one can account for the stray forces which are mostly electromagnetic in nature. The effect of

electromagnetic surface forces can also be reduced by using conductive screens [61, 62]. We

expect the size and thickness of this conductive screen to limit the separation r between the

source mass and the atom. The exact limits will be investigated as part of future research.

The position dependence of some of the extra forces can be used to make them relatively

weaker than the force that is being measured (for instance the Casimir Polder force goes as

r−7).

One more aspect of the experimental setup that can affect the momentum space distribution

of the atom is the intensity and frequency noise of the laser source. The bandwidth of our

signal is set by the cavity line width κ. For our simulations, κ = 2π × 0.59 = 3.7MHz.

The signal to be measured has the oscillation frequency ωB ∼ 1KHz. The first thing is to

observe is that the signal varies more slowly compared to the bandwidth of the signal, which

is usually the case. The next thing is to compare this to the spectrum of the laser intensity

noise. The lowest intensity noise possible is set by the inherent Poissonian nature of the

photon spectrum and is called shot noise. In addition to shot noise, the general structure

of intensity noise [69] for a diode laser shows peaking at lower frequencies (ν ≤ 500 kHz),

for a range of intermediate frequencies (500 kHz < ν < 3GHz) there is a broad plateau

which rises to a peak at the laser’s relaxation frequency (around 2−3GHz). For frequencies

above the relaxation frequency the noise decreases towards the shot noise limit. The laser

frequency noise has a spectrum similar to the intensity noise spectrum. The signal frequency

to be observed is of the order of a few kHz, which means it is in a range where the intensity

noise generally peaks. The bandwidth of the signal (order of MHz) sits in the intermediate

ranges of the intensity noise spectrum where there is a plateau. The above discussion is

very elementary and gives an idea of the different frequencies involved. The best choice of

parameters that minimise the signal to noise ratio are beyond the scope of this thesis and

will be reserved for future research. We will also examine which of the two regimes, large

or small g2
0/(δκ), is ideal to get a good signal to noise ratio. The detection techniques for

the regimes will also be different, since one of them involves a phase measurement and the

other, an intensity measurement.

This completes a discussion of the experimental setup needed to test the predictions of

our theoretical proposal.
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Summary

In Chapter 1, the system under consideration was introduced. The aim is to use BZO

of a single cold atom in an optical cavity, to make a precision measurement of gravity.

The small size and high sensitivity of the atomic probe would help in detecting deviations

from the Newtonian law at micrometer scales. The observable for our proposal is the light

transmitted out of the cavity. This makes it different from other cold atom systems used to

probe BZO, since destructive imaging techniques used to probe the atoms are not needed,

and a continuous measurement of the observable over many oscillations should be possible.

In Chapter 2, the Hamiltonian for the system was presented. The cavity mode is far-

detuned from the atomic transition frequency. This means the excited state of the atom

can be adiabatically eliminated. The net result is we have a set of coupled equations for the

ground state wave function of the atom and the single-mode cavity field. The equation of

motion for the wave function (Eq. 2.26a) is a Schrödinger equation for a particle in a periodic

potential with an additional constant force. The constant force of interest is F = Mg where

g is acceleration due to gravity. The equation of motion for the field (Eq. 2.26b) depends on

the atomic degrees of freedom through the coupling integral (Eq. 2.27) which is essentially

the atomic expectation value of the periodic potential.

In Chapter 3, the basic theory of BZO was discussed. The periodic semiclassical evolu-

tion of the quasi-momentum in the lowest band under the influence of the force term was

used to define the Bloch period. A quantum mechanical interpretation of the same was given

from the Schrödinger equation obeyed by the gauge transformed wave function (Eq. 3.21).

The Houston solution (Eq. 3.25) is the adiabatic solution to the full Hamiltonian. The

adiabaticity conditions are summarized by requiring the Bloch frequency ωB to be smaller

than other frequencies in the problem (ωho, ∆E, κ). It was also noted that the Houston

solution can be extended to a case where the lattice depth is modulated with time provided

the frequency of modulation is still consistent with the adiabatic condition.
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In Chapter 4, the coupled equations of motion were solved. The value of the coupling

constant g2
0/(δκ) gave two qualitatively different regimes for the solution. When g2

0/(δκ) <<

1, the amplitude of the field was a constant, whereas the phase was modulated at the Bloch

frequency. For g2
0/(δκ) ∼ 1, the amplitude of the field was also modulated at the Bloch

frequency and we had a situation where the atom moves in a periodic potential and at the

same time affects the amplitude of the potential by back-action. A self-consistent solution

for the lattice depth was calculated using the adiabatic Houston wave function. This agreed

well with the numerically calculated lattice depth. Finally, the higher frequency oscillations

found in the lattice depth as a function of time were identified as higher band effects.

In Chapter 5, experiments that studied BZO of cold atoms in optical lattices were

discussed. This helped to put our proposal in perspective, and to identify some issues that

will be relevant for the experimental realisation. In the last section of Chapter 5 a schematic

experimental implementation of the proposal was presented. The spontaneous scattering

rate, which limits the number of BZO that can be observed, was calculated. Other sources

that can broaden the momentum space distribution were discussed. Future directions of

research include an estimation of the right parameter ranges for the experimental realisation,

determination of the regime of g2
0/(δκ) (≫ 1 or ≪ 1) which is ideal for an experiment and

a detailed study of momentum diffusion in an optical cavity.



Appendix A

Adiabatic Elimination

In this appendix we will work out the effective hamiltonian from the original hamiltonian

Eq. 2.18. The treatment of the book [31] is closely followed.

Since adiabatic elimination involves only the atom-light interaction term (Eq. 2.12),

other terms in the hamiltonian (Eq. 2.18) can be ignored for now. The hamiltonian under

consideration is :

H1 =
~ω0

2
σz + ~ωcâ

† â+ ~g0 cos(kcz)
(

âσ+ + â†σ−
)

Consider a state for the atom and the light field inside a cavity given by :

| ψ〉 = a | e〉 | n− 1〉 + b | g〉 | n〉. (A.1)

where | e〉 and | g〉 denote the excited and ground states of the two-level atom respectively

and | n〉 denotes the photon number state of the field i.e. â†â | n〉 = n | n〉. Substituting the

above state into the time dependent Schrödinger equation we get the following equations

for a and b :

i~
da

dt
=

(

~ωc(n− 1) +
1

2
~ω0

)

a+ ~g0 cos(kcz)b (A.2a)

i~
db

dt
=

(

~ωcn− 1

2
~ω0

)

b+ ~g0 cos(kcz)a. (A.2b)

Now perform a frame change for the Hamiltonian i.e. apply an unitary transform on the

hamiltonian.

Under a general unitary transform U , the hamiltonian H goes to H′ as :

H
′

= i~
˙̂
UÛ † + ÛHÛ † (A.3)
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The state vector transforms under the same as | ψ1〉 = Û | ψ〉. Now let us perform the

above unitary transform on H1 with U = eiH0t/~ where,

H0 =
~ω0

2
σz + ~ωcâ

†â. (A.4)

The state | ψ1〉 is transformed as :

| ψ2〉 = Û | ψ〉 = a2 | e〉 | n− 1〉 + b2 | g〉 | n〉 , (A.5)

where the coefficients a2 and b2 are given by :

a2 = aei[(n−1)ωc+
ω0
2

]t (A.6a)

b2 = bei[(n)ωc−ω0
2

]t. (A.6b)

The Schrödinger equation in the new frame leads to the following equations for the coeffi-

cients :

da2

dt
= −ig0 cos(kcz)

√
n ei(ω0−ωc)tb2 (A.7a)

db2
dt

= −ig0 cos(kcz)
√
n e−i(ω0−ωc)ta2. (A.7b)

To make the final equations for a2 and b2 time independent, we need a2 ≈ ei(ω0−ωc)t. We

derive this by the following procedure. Integrating the equation for a2(t) we get :

a2(t) =

∫ t

−∞
−ig0 cos(kcz)e

i(ω0−ωc)t
√
nb2(τ)dτ (A.8)

=

[−ig0 cos(kcz)

i(ω0 − ωc)
ei(ω0−ωc)τ

√
nb2(τ)

]

−
∫ t

−∞
dτ

√
n

(

∂b2
∂τ

)(−ig0 cos(kcz)

i(ω0 − ωc)
ei(ω0−ωc)τ

)

.

(A.9)

For large detuning the ground state population is more or less constant (low excitation

probability), which means the factor ∂b2
∂τ varies more slowly in comparison to the exponential

term ei(ω0−ωc)τ . We pull out ∂b2
∂τ and evaluate it at t. With this approximation the second

term in Eq. A.9 goes as (ω0 − ωc)
−2 because of the 1/(ω0 − ωc) factor coming from the

integration of the exponential. For large detuning this term is smaller than the first term

of Eq. A.9, which goes as 1/ (ω0 − ωc). Neglecting the second term the expression for a2(t)

gives :

a2(t) ≈
−g0 cos(kcz)

ω0 − ωc
ei(ω0−ωc)τ

√
nb2(τ). (A.10)
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Substituting this in the equation for b2 we get :

db2
dt

=
in | g0 |2 cos2(kcz)

(ω0 − ωc)
b2. (A.11)

Consider the effective hamiltonian :

H
′

eff =
~g2

0 cos2(kcz)â
†â

(ω0 − ωc)
σz. (A.12)

From the Schrödinger equation,

i~
d | ψ2〉
dt

= H
′

eff | ψ2〉 , (A.13)

one can see that the equation obeyed by b2 is exactly Eq. A.11. So we have found our

effective hamiltonian. Reversing the initial frame change and observing that the effective

Hamiltonian (a function of σz) is invariant under this leads to the adiabatically eliminated

Hamiltonian in its final form :

Heff =
~ω0

2
σz + ~ωcâ

† â− ~g2
0 cos2(kcz)â

†â
δ

σz. (A.14)
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Adiabaticity Criterion

Consider the wavefunction :

Ψ =
∑

n

an(t)uq+2πn−λt exp [i(q + 2πn − λt)z] exp

[

−(i/~)

∫ t

Eq+2πn−λτdτ

]

. (B.1)

Here the index n is the band-index we mentioned previously. an is then the probability

amplitude for the wavefunction to be in band n. Substitute this into the Schrödinger Eq. 3.20

and use the orthogonality of the Bloch functions belonging to different zones/bands (we have

a complete set of basis functions), we get an equation for the coefficients an :

dan

dt
=
∑

m

am

(
∫

dzu∗q+2πn−λt(z)λ
duq+2πm−λt(z)

dq
exp [2πi(m− n)z]

)

exp

[

−(i/~)

∫ t

(Eq+2πm−λτ − Eq+2πn−λτ ) dτ

]

.

(B.2)

Let us from now denote uq+2npi−λt as uq(t),n making explicit the fact that n is the band

index. Now the instantaneous eigenvalue equation for the Bloch function φq(t),n leads to an

equation for u (Eq. 3.22) :

Huuq,m =

((

(p̂− ~q)2

2M

)

+ s cos2(kcz)

)

uq,m(z) = Eq,nuq,m(z). (B.3)

Differentiating the above equation with respect to q we have :

∂Hu

∂q
uq,m +Hu

∂uq,m

∂q
= Eq,m

∂uq,m

∂q
+
∂Eq,m

∂q
uq,m (B.4a)

−~

M
p̂uq,m +

~
2q

M
uq,m +Hu

∂uq,m

∂q
= Eq,m

∂uq,m

∂q
+
∂Eq,m

∂q
uq,m. (B.4b)
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Now when the inner product of the last equation with u∗q,n exp [2πi(m− n)z], such that

m 6= n, is taken the following terms drop out due to the orthogonality of the Bloch functions :

∫

dzu∗q,n

∂Eq,m

∂q
uq,m exp [2πi(m− n)z] = 0 (B.5a)

∫

dzu∗q,n

~
2q

M
uq,m exp [2πi(m − n)z] = 0. (B.5b)

One of the terms that occurs as a result of taking the inner product can be rewritten in this

manner :

∫

dzu∗q,n

∂uq,m

∂q
exp [2πi(m− n)z] =

1

Eq,m − Eq,n

∫

dzu∗q,n

−~

M
p̂uq,m exp [2πi(m− n)z].

(B.6)

Substituting the last expression Eq. B.6 into the Eq. 3.22 one gets :

dan

dt
=
∑

m

am

(
∫

dzu∗q+2πn−λtλ
−~p̂

M
uq+2πm−λt exp [2πi(m− n)z]

)

1

Eq,m − Eq,n

exp

[

−(i/~)

∫ t

(Eq+2πm−λτ − Eq+2πn−λτ ) dτ

]

.

(B.7)

Let us say we start with a Bloch wavefunction with quasi-mometum in the first Brillouin

zone (m = 0) or the lowest band. As this wavefunction evolves and reaches the edge of the

first brillouin zone, one can observe two things from equation Eq. B.7. Change in the

coefficient an is largest for that n which has very small (Eq,m −Eq,n). One quasimomentum

vector that satisfies this condition is the one at the opposite edge of the Brillouin zone.

Hence this justifies the Bragg scattering idea. Now the strength of the transition amplitude

to other bands depends directly on F and inversely on the difference in energy between the

bands (Eq,m−Eq,n) as one can observe from Eq. B.7. Thus this shows that with sufficiently

deep periodic potentials and weak enough forces one can avoid the tunneling to higher bands

preserving adiabaticity.

The exact condition for adiabatic evolution can be written down by recognising that equation

Eq. B.7 gives the rate of change of probability amplitude to occupy higher bands. The

adiabaticity criterion requires this rate to be much smaller than the frequency of the energy

gap between the bands. Let us say after the adiabatic terms only the first excited band

has significant contribution in the RHS of Eq. B.7 and call the energy difference between
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ground band and first excited band ∆E, we have :

~λ〈uq,m | p̂ | uq,n〉
M∆E

<< ∆E/~ (B.8a)

~ωB <<
M∆2

Ed

~〈uq,m | p̂ | uq,n〉
, (B.8b)

where ωB = Fd/~ is the Bloch frequency. Now near the edge of the band one can model the

lower and higher band as almost degenerate plane waves with momenta given by the field

momenta kc. Thus, the final expression for the adiabaticity criterion is :

~ωB <<
M∆2

Ed

~2kc
. (B.9)
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