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Semiclassical coupled wave theory is extended to TM waves in one-dimensional periodic dielectric
structures. Using this theory, the band widths and reflection/transmission characteristics of such
structures, as functions of the incident wave frequency, are in good agreement with exact numerical
simulations even for very deep gratings.
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I. INTRODUCTION

A one dimensional periodic structure with high refrac-
tive index contrast can serve as a photonic crystal [1–5].
Among the common theoretical methods for wave mo-
tion in such structures, the coupled wave approach offers
superior physical insight and gives simple analytical re-
sults in limiting cases. Unfortunately, the conventional
coupled wave theory of Kogelnik [6–8] fails in the case of
high refractive index contrast, which is required for a 1D
photonic crystal.

In a previous article [9] we extended the first approxi-
mation of the semiclassical coupled wave theory for nor-
mal propagation [10, 11] to the case of oblique incidence
of TE waves. Using the Bogolyubov averaging method
[12], we developed a second approximation for the same
case. Our method allows for both variable amplitudes
and variable (geometric-optics) phases in the counter-
propagating waves. While it is analytically almost as
simple as conventional coupled wave theory, our method
is essentially exact for any achievable ratio (e.g. 1.5 :
4.6) of the indices of refraction of the layers comprising
buildable devices.

In this paper we extend our semiclassical coupled wave
theory to the case of oblique propagation of TM electro-
magnetic waves. Both the first and the second approx-
imations are extracted. Surprisingly, the first approxi-
mation works even better for the TM case than it did
for TE waves. The second approximation gives practi-
cally exact results even for structures with a very deep
modulation of the refractive index. Using our analytic
expressions for the band edges, one can easily optimize
the positions and widths of the forbidden zones, in order
to fine tune photonic devices.

In the following section, the semiclassical coupled-wave
method for TM waves is developed. We obtain simple
analytical expressions for the Bloch phase, which is a
key parameter for determination of band structure, and
for the reflection/transmission amplitudes. As an appli-
cation, in Sec. III we find the optimal omnidirectional

forbidden band of a bilayer periodic dielectric structure.
In Sec. IV we show how to apply the theory to a peri-
odic structure with a continuous harmonic profile of the
refractive index. The conclusions are in Sec. V.

II. SEMICLASSICAL COUPLED WAVE
THEORY

We consider a wide, absorptionless, non-magnetic (µ =
1) slab whose normal is the z-axis, occupying the region
0 < z < L. The index of refraction n(z) = n(z+d) varies
periodically in the z-direction, but does not depend on
x or y. The slab is surrounded on both sides by a ho-
mogeneous dielectric medium with n(z) = n0 on the left,
and n(z) = nf on the right. In gaussian units, the dielec-
tric permittivity ε(z) is the square of the refractive index:
ε(z) = n2(z). For monochromatic fields of circular fre-
quency ω, i.e. for harmonic time dependence, we can set
E(r, t) = E(r) exp(−iωt) and H(r, t) = H(r) exp(−iωt).
TM waves have H perpendicular to the plane of wave

propagation, which can be chosen as the xz plane, when
the refractive index varies only in the z-direction. Writ-
ing H(r) = H(z) ei kβxêy, Maxwell’s equations inside the
periodic slab reduce to a single scalar equation for the
amplitude H(z) = Hy

d

dz

(
1
ε(z)

dH

dz

)
+ k2

[
1 − β2

ε(z)

]
H(z) = 0 (1)

or, in terms of the refractive index

d2H

dz2
+ k2[n2(z) − β2]H(z) − 2

n(z)
dn(z)
dz

dH

dz
= 0 . (2)

In these formulae, k = ω/c, and kβ is the (constant)
x-component of the wave vector of modulus k(z) =
ω n(z)/c inside the medium. If a TM wave impinges
on the periodic medium from the region z < 0, then
β = n0 sin θ0, where θ0 is the angle of incidence measured
from the normal. According to Maxwell’s equations, the
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components Ex(z) and Ez(z) of the electric field of the
TM wave E(r) = [Ex(z)êx + Ez(z)êz] ei kβx can be ex-
pressed as

Ex(z) = − i

kε(z)
dH(z)
dz

, Ez(z) = − β

ε(z)
H(z) . (3)

We require the fields Hy(z) and Ex(z) to be continuous.
Therefore, at any point of discontinuity zj of the dielec-
tric permittivity ε(z), or correspondingly of the refractive
index n(z), we match H(z) and n−2(z)dH(z)/dz. By
means of the substitution H(z) = h(z)n(z), we eliminate
the first derivative term from eq. (2):

d2h(z)
dz2

+
[
k2(n2(z) − β2) +Q(z)

]
h(z) = 0, (4)

where

Q(z) =
1

n(z)
d2n(z)
dz2

− 2
n2(z)

(
dn

dz

)2

. (5)

Eq.(4), (as well as eq. (2) of Ref. [9] for TE polarization,)
is formally equivalent to the wave equation for normal
incidence if we were to follow Ginzburg [13] in setting
the effective value of n(z) to

nse(z) =
√
n2(z) − β2 ,

npe(z) =

√
n2(z) − β2 +

Q(z)
k2

(6)

for TE and TM polarizations respectively. However,
npe(z) would then depend on the vacuum wave number
k and it would be quite difficult to extend our semiclas-
sical coupled wave theory to the TM case. Instead, let
us use the same effective value of n(z) for TM waves as
for TE waves. Introducing the notation ne = nse(z), we
seek a solution of eq. (4) in terms of two counterpropa-
gating waves with slowly varying amplitudes A±(z) and
geometric-optics phases

h(z) =
A(+)(z)eiψ(z)√

ne(z)
+
A(−)(z)e−iψ(z)√

ne(z)
,

ψ(z) = k

∫ z

0

ne(z′)dz′ . (7)

After the substitution of expression (7), eq. (4) (and,
therefore, Maxwell’s equations) becomes an identity if
the amplitudes A(±)(z) satisfy the system

dA(+)(z)
dz

= S(−)(z)A(−)(z) ,

dA(−)(z)
dz

= S(+)(z)A(+)(z) , (8)

where

S(±)(z) = w(z)e±2iψ(z) , (9)

and the function w(z) satisfies the Riccati equation

dw

dz
− 1
ne

dne
dz

w + w2 =
1
2

1
ne

d2ne
dz2

− 3
4

1
n2
e

(
dne
dz

)2

+
2
n2

(
dn

dz

)2

− 1
n

d2n

dz2
. (10)

This has an exact solution

w(z) =
1
2

1
ne

dne
dz

− 1
n

dn

dz
. (11)

For TE waves, (see Ref. [9]), the analogous procedure
leads to the same form (8) of S(±)(z) but with w(z) =
1/(2ne(z))dne/dz. The system (8) is exact. Introducing
the phase averaged refractive index ne,av = ψ(d)/kd, i.e.

ne,av =
1
d

∫ d

0

ne(z′)dz′ ≡ 1
d

∫ d

0

√
n2(z′) − β2 dz′ , (12)

we find that the quantities S(±)(z) exp(∓2ikne,avz) are
periodic functions that can be Fourier expanded as

S(±)(z)e∓2ikne,avz =
m=+∞∑
m=−∞

p(±)
m ei2πmz/d , (13)

where

p(±)
m =

1
d
P
∫ d

0

(
1

2ne(z)
dne
dz

− 1
n(z)

dn

dz

)
e2i(±ψ(z)∓kne,avz−πmz/d)dz

+
1
2d

∑
j

ln
(
ne(zj + 0)n2(zj − 0)
ne(zj − 0)n2(zj + 0)

)
e2i(±ψ(zj)∓kne,avzj−πmzj/d) . (14)

Physically, these coefficients represent the importance of
coupling between the two counterpropagating waves of

(7) due to the m-th Fourier components of the functions
S±(z). The P implies a principal value integral, and the



3

sum over j = 1, 2, ... takes into account the contribution
to p(±)

m of jumps in the refractive index n(z) at the points
of discontinuity zj within the period. If a discontinuity in
n(z) occurs at the beginning or at the end of a period, we
should take this discontinuity into account only once, say
at the beginning of the period. The quantities n(zj ± 0)
are the limiting values of the refractive index n(z) to
the right/left of a point of discontinuity zj . We see that
p
(+)
−m is just the complex conjugate of p(−)

m , so from this
point forward we will use the notation p

(−)
m ≡ pm and

p
(+)
−m = p∗m. These coefficients depend on the wavenum-

ber k of the incident wave, on the behaviour of the slab
refractive index n(z) = n(z + d) over a period d, and on
the external conditions (n0, θ0). However, in case of nor-
mal incidence (θ0 = 0) the dependence on n0 drops out.
In conventional coupled wave theory the magnitudes of
the coupling coefficients for TM case are determined by

pconm =
k

2d
1 − 2β/εav√
εav − β2

∫ d

0

ε(z)e−2iπmz/ddz ,

εav =
1
d

∫ d

0

ε(z)dz . (15)

The difference between the coupling coefficients pm and
pconm is the key point of departure of our semiclassi-
cal theory from the conventional (Kogelnik) one and is
due to the fact that in our theory multiwave diffrac-
tion by periodic inhomogeneities of ε(z) is taken into
account. In Kogelnik theory only one diffracted wave:
exp(−ikz

√
εav − β2) (in addition to the transmitted

wave: exp(ikz
√
εav − β2)) was assumed to exist within

the periodic structure.
In order to find the band gaps and transmis-

sion/reflection coefficients of the structure we must solve
the system (8). As in Ref. [9], we define the Bragg reso-
nances kq of our periodic slab, by

kqne,av =
π

d
q , q = 1, 2, 3... (16)

and introduce the detuning δq from the q-th Bragg reso-
nance, as

kne,av =
π

d
q + δq,

{− π
2d < δq �=1 <

π
2d−π

d < δ1 <
π
2d

. (17)

Eq. (16) is the well-known Bragg condition for construc-
tive interference. Physically, it means that the optical
path difference between partial waves reflected from suc-
cessive planes of the inhomogeneous refractive index con-
tains an integral number of wavelengths. In the initial
(“zeroth”) approximation the Bragg resonances coincide
with the centers of the forbidden bands. In conventional
coupled wave theory the Bragg resonances are located at
points where kqd

√
εav − β2 = π q. This leads to a less

accurate determination of the centers of the forbidden
bands kq and, as a result, to a less accurate estimation
of the detuning δq. This is the second point of departure
between the two theories.

If all the coefficents |pmd| < 1 and the detuning
|δqd| < 1, we can use the method of averaging [12] to
obtain an approximate solution of (8). In practice, the
method assumes that the main contribution to the ex-
act solutions of (8) is provided by the slowly-varying
components of the functions S±(z). (We also note that
the method of averaging can give reasonable results even
in cases where some of |pmd| > 1 or |δqd| > 1.) Re-
peating the calculations of Ref. [9], but taking into
account that the coefficients pm for TM polarization
are determined by (14) and, therefore, differ from the
TE case, we find that in each zone along the k-axis
π(− 1

2 + q)/(ne,avd) < k < π(1
2 + q)/(ne,avd), the char-

acteristic index æ and the Bloch phase φ in the first and
second approximations take the forms

æ1,2 = q
π

d
+ iγ1,2 , φ1,2 = q π + iγ1,2 d , (18)

where

γ1(k) =
√
|pq(k)|2 − δ2q , γ2(k) =

√
|pq(k)|2 − η2

q (19)

and

ηq = δq +
d

2π

m=+∞∑
m �=q=−∞

|pm|2
m− q − δq d/π

. (20)

In forbidden bands, where |pq| > |δq| (first approxima-
tion), or |pq| > |ηq| (second approximation), γ1,2 is a
real positive number. In allowed bands, where |pq| < |δq|
(first approximation), or |pq| < |ηq| (second approxima-
tion), γ1,2 is a pure imaginary number: γ1 = i|γ1|, if
δq < 0 and γ1 = −i|γ1|, if δq > 0; γ2 = i|γ2|, if ηq < 0
and γ2 = −i|γ2|, if ηq > 0. These formulae determine the
position and width of the forbidden band for the TM
mode at a given angle of incidence θ0. Similar formu-
lae apply to the TE mode at the same angle but with
different coefficients pm as in [9].

At normal incidence the distinction between TM and
TE modes disappears; to be more accurate the cou-
pling coefficients for the two polarizations are related by
pTMm = −pTEm . At increasingly oblique angles the forbid-
den band of the TE mode widens (if all other parameters
of the slab are fixed), whereas the forbidden band of the
TM mode narrows. The center of the forbidden band
shifts to higher wavenumber k (to higher frequencies).
Therefore, an omnidirectional forbidden band for both
TE and TM polarizations occurs if there is an overlap
between the forbidden band at normal incidence and the
forbidden band of the TM mode at 90◦. As a result, in
a first approximation the right kr and left kl boundaries
of the q-th omnidirectional forbidden band can be found
from the equations

kr nav − q π/d = |pq(kr, θ0=0)| ,
q π/d− kl nmin,av = |pq(kl, θ0=90◦)| , (21)

where

nav =
1
d

∫ d

0

n(z′) dz′ ,
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nmin,av =
1
d

∫ d

0

√
n2(z′) − n2

0 dz
′ . (22)

Therefore, the center kc of the q-th omnidirectional re-
flection band and its relative bandwidth ∆q are given by

kc =
π q

2d

(
1
nav

+
1

nmin,av

)

+
|pq(kr, θ0=0)|

2nav
− |pq(kl, θ0=90◦)|

2nmin,av
,

∆qkc =
π q

d

(
1
nav

− 1
nmin,av

)

+
|pq(kr, θ0=0)|

nav
+

|pq(kl, θ0=90◦)|
nmin,av

. (23)

The reflection and transmission amplitudes for a wave
incident on a matched periodic structure in the first and
second approximations take the form

r
(1)
B =

−p∗q sinh(γ1L)
γ1 cosh(γ1L) − iδq sinh(γ1L)

,

t
(1)
B =

γ1e
iπNq

γ1 cosh(γ1L) − iδq sinh(γ1L)
; (24)

r
(2)
B =

(−p∗q − 2i ηqu∗ + pqu
∗2
)
sinh(γ2L)

(1 − |u|2) γ2 cosh(γ2L) − i [(1 + |u|2)ηq − 2 Im(pqu∗)] sinh(γ2L)
,

t
(2)
B =

(1 − |u|2) γ2 e
iπNq

(1 − |u|2) γ2 cosh(γ2L) − i [(1 + |u|2)ηq − 2 Im(pqu∗)] sinh(γ2L)
, (25)

where

u = − id

2π

m=+∞∑
m=−∞,m �=q

pm
m− q − δq d/π

. (26)

By matched, we mean that the refractive index is contin-
uous across the exterior boundaries at z = 0 and z = L,
i.e. there is no Fresnel reflection from them. The reflec-
tion rΣ and transmission tΣ amplitudes for an arbitrary
(non-matched) periodic structure can be found from the
matrix equation(

1
rΣ

)
=
(

1/t0 r0/t0
r0/t0 1/t0

) (
1/tB r∗B/t

∗
B

rB/tB 1/t∗B

)
×(

1/tf rf/tf
rf/tf 1/tf

) (
tΣ
0

)
, (27)

where the Fresnel reflection r0,f and transmission coef-
ficients t0,f for TM waves are responsible for the wave
transformation on the boundaries of the structure.

The expressions (24) for the reflection and transmis-
sion coefficients in the first approximation of the semi-
classical coupled wave theory have the same form as those
in the conventional coupled wave theory [7, 8, 11], if we
take into account the difference between the positions of
the Bragg resonances described above, and the magni-
tudes of coupling coefficients in the two theories. Due
to these differences, as we shall see in the next section,
the first approximation of our semiclassical theory al-
ready gives eminently reasonable results in cases where
the conventional theory fails. The second approximation
of the semiclassical theory gives good agreement (within
10%) with exact numerical results even in the most un-
favourable situations.

III. BI-LAYER PHOTONIC CRYSTAL

To illustrate our semiclassical coupled wave theory, we
consider a two-layered periodic medium with real refrac-

tive indices n1 and n2 and layer thicknesses d1 and d2

such that d = d1 + d2, as shown in Figure 1.

FIG. 1: Two-layered periodic dielectric structure (bi-layer
photonic crystal).

According to (12) the effective averaged refractive in-
dex of this slab is

ne,av =

√
n2

1 − β2 d1 +
√
n2

2 − β2 d2

d
. (28)

The first (integral) term in (14) is zero. The contribu-
tions to the second term come from the points z1 = d1/2
and z2 = d1/2 + d2. Summing them up, we obtain

pm =
i

d
ln

[√
n2

2 − β2 n2
1√

n2
1 − β2 n2

2

]
e−imπ

× sin
[
d2

d

[
mπ + kd1

(√
n2

2 − β2 −
√
n2

1 − β2

)]]
.(29)
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As a result, the relative bandwidth of the q-th omnidirectional reflection band according to eqs. (23) is

∆q ≈ 2
qπ (1 − a) /d+ |pq(kq, θ0=0)| + a |pq(kq, θ0=90◦)|
qπ (1 + a) /d+ |pq(kq, θ0=0)| − a |pq(kq, θ0=90◦)| , a ≡ n10 d12 + n20√

n2
10 − 1 d12 +

√
n2

20 − 1
, (30)

where n10 = n1/n0, n20 = n2/n0, d12 = d1/d2, and we take into account that

|pq(kl, θ0=90◦)| ≈ |pq(kq, θ0=90◦)| =
1
d

∣∣∣∣∣ln
(√

n2
20 − 1n2

10√
n2

10 − 1n2
20

)
sin

(
qπ

1 +
√
n2

10 − 1 d12/
√
n2

20 − 1

)∣∣∣∣∣ ,
|pq(kr, θ0=0)| ≈ |pq(kq, θ0=0)| =

1
d

∣∣∣∣ln
(
n10

n20

)
sin
(

qπ

1 + n10d12/n20

)∣∣∣∣ . (31)

One sees that the relative bandwidth of the q-th omni-
directional band (when it exists) depends on just three
ratios: n10, n20 and d12. For each choice of materials,
i.e. for each choice of n10 and n20, there is a value of
d12 that maximizes the relative bandwidth. Moreover,
for a given ambient medium n0 we can obtain the widest
possible relative bandwidth of the q-th omnidirectional
band if we maximize the above function with respect to
all three parameters simultaneously.

Let us consider a specific example. For the tin sul-
fide/silica (n1 = 2.6, n2 = 1.46) structure in air (n0 =
1.0) on a substrate with nf = 2.6, the first omnidi-
rectional reflection band is centered at the frequency
νc = 4.49 × 1014 Hz (λc = 668 nm) with the relative
bandwidth ∆1 = 9.2% if the thicknesses of the layers are
d1 = 80 nm and d2 = 115 nm. These parameters corre-
spond to those in an experiment of Fink et al [14]. Keep-
ing the first material the same (n1 = 2.6), we obtain from
eq. (30) that the optimal second material should have
n2 = 1.5 and the ratio of the layer thicknesses should
be d12 = 8/11, rather than d12 = 16/23. This ratio
provides relative bandwidth ∆1 = 9.4%. To obtain om-
nidirectional reflection centered at the same frequency
νc = 4.49 × 1014 Hz, we need d1 = 80 nm and d2 = 110
nm. In Fig. 2 we show the Bloch phase φ and reflection
coefficient for a structure of N = 6 periods. The exact
results were obtained numerically by the transfer matrix
method. We can see that even the first approximation of
the semiclassical coupled wave theory works well for all
frequencies of the incoming waves.

IV. HARMONIC PERIODIC STRUCTURE

As a second application of our theory, we consider a
periodic structure with a harmonic refractive index pro-
file of the form n(z) = nav + nA sin(2πz/d), see Fig. 3.
Initially we take nav = 1.965 and d = 190 nm as in
the previous example of a bilayer photonic crystal. The
number of periods N = 6 and the refractive indices of an
ambient media n0 = 1 and a substrate nf = 2.6 corre-
spond to that example as well. For a moderate refractive
index modulation nA = 0.5 the results are shown in Fig.
4. Again, the first approximation of the semiclassical

FIG. 2: Bloch phase and reflection vs. frequency for TM mode
at normal and 85◦ angle of incidence on the two-layered pe-
riodic structure with the parameters described in text; exact
numerical results (solid line); first approximation of the semi-
classical theory (thin line with points). The shaded region
shows the omnidirectional bandgap.

coupled wave theory is in good agreement with the exact
numerical solutions.

For the second harmonic structure we take nav = 3
and d = 124.5 nm (we keep the same product nav d as in
the previous example) and consider the very deep mod-
ulation nA = 1.5. The results are shown in Fig. 5. The
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FIG. 3: Harmonic periodic dielectric structure

FIG. 4: Bloch phase and reflection vs. frequency for TM
mode at normal and 85◦ angle of incidence on the harmonic
periodic structure with a moderate (nA = 0.5) refractive in-
dex modulation; the parameters are as described in text; ex-
act numerical results (solid line); first approximation of the
semiclassical theory (thin line with points).

first approximation, especially for normal incidence, is
satisfactory only in forbidden bands. However, the sec-
ond approximation works well for all frequencies of the
incoming waves. Also, this example shows that for TM
waves, the first approximation of our semiclassical cou-
pled wave theory works better for large incident angles

FIG. 5: Bloch phase and reflection vs. frequency for TM
mode at normal and 85◦ angle of incidence on the harmonic
periodic structure with a deep (nA = 1.5) refractive index
modulation; the parameters are as described in text; exact
numerical results (solid line); first approximation of the semi-
classical theory (gray solid line); second approximation of the
semiclassical theory (points).

θ0 than for small ones. This is contrary to the case of TE
waves; see [9].

V. CONCLUSIONS

The semiclassical coupled wave theory [9] has been ex-
tended to TM waves. The results obtained show that
simple approximate anlytical solutions (the first approx-
imation of our theory) provide all significant character-
istics of the exact solutions in many cases. However, if
the modulation of the refractive index of the periodic
structure is very deep, one needs to go to the second ap-
proximation, which is based on the Bogolyubov averaging
method. In the future, we plan to extend the semiclassi-
cal coupled wave theory to absorptive media.
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