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I. INTRODUCTION

Anti-reection coatings (ARC) are of great importance
in many areas. In optics the aim is to maximize the trans-
mission of visible light through lenses by applying coat-
ings with suitable indices of refraction on both surfaces.
For microwave transmission, the analogous problem is to
minimize reection at a junction between two sections of
waveguide, by means of an impedance transformer con-
sisting of sections of varying cross-section. Solutions for
these problems were worked out in the 1950's and can be
found in many books and reviews, of which we cite some
representative examples [1{6].
Recently Gornik's group in Vienna [7,8] have studied

the analogous problem of constructing an energy band-
pass �lter for electrons in a semi-conductor heterostruc-
ture. In a �rst paper they demonstrated a single-cell
ARC, which raised the transmissivity through a super-
lattice to about 80% across the lowest allowed band. In
further work they proposed a double cell device with even
better properties. We have derived exact criteria for op-
timizing the properties of a single-cell ARC [9].
The problem of constructing a pass-band �lter for elec-

trons has been discussed by several groups. Gaylord and
collaborators [10,11] very early wrote a series of papers
proposing to take over the well-established solutions from
optics and microwaves. Chang and Kuo [12] translated
the Gaylord approach into the language of impedance
transformers. Tung and Lee [13,14] and later Gomez
et al. [15] considered a rather di�erent �lter based on
a gaussian distribution of barrier strengths. Yang and
Li [16] extended this approach by using a variety of dif-
ferent distributions, but with no underlying theory as to
why these might or might not work. In other words, pre-
vious approaches have either relied on the similarity to
optical and microwave ARCs, assuming that this well-
developed theory would apply to electrons, or else they

simply guessed at how to proceed.
The aim of the present paper is three-fold. First of

all, we draw attention to an interesting analogy between
(i) a particle scattering in a one-dimensional potential,
and (ii) a spin-half system precessing in a magnetic �eld.
Secondly, we use this analogy to give a simple and intu-
itive explanation of how an impedance transformer, and
consequently a band-pass �lter, works. While such a pic-
ture does not entirely dispense with the ingenious calcu-
lations underlying the classical recipes for ARC cells and
impedance transformers, it certainly provides insight to
the crucial issues involved. In particular, it leads to the
concept of stability conditions and their role in de�ning
the parameters of an N -cell ARC.
Our third contribution is to identify the most impor-

tant di�erence between band-pass �lters for electrons and
their counterparts in optics. This leads us to propose a
simple model, called the linear model, which is similar to
the true situation for electrons in semiconductor super-
lattices. We solve this model analytically, and show that
the resulting �lter is very di�erent from the well-known
Butterworth or binomial �lter of optics or microwave en-
gineering. As a practical application, our method is ap-
plied to the device of Coquelin et al. [7,8]. We �nd that
their transmissivity could be signi�cantly improved by
following our method.

II. TRANSFER MATRIX

In the single-band envelope function approximation,
the electron wavefunction satis�es the Schr�odinger equa-
tion in a real potential and with an energy and position
dependent (real) e�ective mass [17] m�(E; x):

	(x; t) = e�iEt=�h  (x)
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d2 (x)

dx2
+
2mm�

�h2
[E � V (x)] (x) = 0

k2(x) =
2m

�h2
m�(E; x)[E � V (x)] : (1)

The time-reversed spatial wave function is  �(x). Con-
sider a potential cell, placed �d < x < d. Outside the
cell, assuming zero potential, k becomes constant and we
may write the wave function in the form

 (x) = a e+ik(x+d) + b e�ik(x+d) ; x � �d;
= a0e+ik(x�d) + b0e�ik(x�d) ; x � +d: (2)

The amplitudes on opposite sides of a cell are related by�
a
b

�
=

�
M11 M12

M21 M22

��
a0

b0

�
(3)

which de�nes our transfer matrix M . It has the proper-
ties detM = 1, and through TrM = 2 cos �, de�nes the
Bloch phase associated with a periodic array of identical
cells.
For a scattering problem with incident wave from the

left, a = 1, b = rL = r; a0 = tL = t, b0 = 0, one easily
sees that the �rst column of M is given by

M11 =
1

t
; M21 =

r

t
(4)

The second column of M is determined by conserva-
tion of ux, and by the corresponding equation for in-
cident waves from the right, with amplitudes denoted
rR = r0 tR = t0. For a general potential, one can show
that t0 = t, and r0=t0 = �r�=t�. The result is

M =

0
@ 1

t
� r0

t0

r
t

1
t�

1
A =

0
@ 1

t
r�

t�

r
t

1
t�

1
A (5)

without assuming parity invariance. Time reversal sym-
metry alone makesM12 =M�

21 and M11 = M�
22.

For a potential with reection symmetry the additional
property rR = rL holds, which makes M12 = �M21 =
M�

21 pure imaginary.
Following Kard [3] for a symmetric cell, we can intro-

duce a parameterization of M , valid in an allowed band:

M11 = cos �� i sin� cosh� =M�
22

M21 = � i sin� sinh� =M�
12 : (6)

This form respects the relation 1 � 1=jtj2 = 1 +
sin2 � sinh2 � as well as det M = 1, but applies only
in an allowed miniband where the Bloch phase � is real.
We call � the impedance parameter, because in the case
of a square well, e� is the impedance, the ratio of velocity
outside to inside the well [12].
For an arbitrary cell, a di�erent phase � occurs on the

o�-diagonal elements

M21 = �ei� sin� sinh� =M�
12 (7)

The symmetric cell corresponds to the special case � =
+�=2. For the moment we con�ne our attention to sym-
metric cells for which we write

M = cos�

�
1 0
0 1

�
� i sin�

�
cosh � � sinh �
sinh� � cosh �

�

= cos � III� i sin� U (2�)

with U (2�) = cosh � �z � i sinh� �y = ��� � ~n (8)

where n is a (complex) unit vector in the Y Z plane. The
meaning of this becomes evident if we write � = i�, giving

M = e�i� �n = Rn(2�)

where �n = ��� � nnn = cos � �z + sin � �y (9)

We recognize Rn as the operator which rotates a spin-
1=2 system by angle 2� around the axis nnn [18], which in
this instance lies in the Y Z plane. For asymmetric cells,
the axis of rotation has azimuthal angle �. The axis of
rotation is imaginary, but this does not invalidate the
analogy.
Now consider an array of cells which need not be iden-

tical. The transfer matrix for the p'th cell is of the same
form as eq. 8, with parameters �p and �p = i�p. It can
be factorized as follows:

Mp = e+i(�p=2)�x e�i�p�z e�i(�p=2)�x

� Y (�p) P (�p) Y (��p) : (10)

Y (�) is associated with a step-up in impedance from zero
to �. The factors can be interpreted as follows. The top
line is a rotation operator acting to the right on a ket.
The spin-half system is rotated around OX by angle �p,
so an axis inclined initially at angle �p, lines up along
OZ. Then the system is rotated by angle �p around OZ,
and �nally rotation around OX by angle ��p restores the
axis to its initial position. The net e�ect is a rotation of
the whole system by angle �p around the axis of rotation
oriented at polar angle �p. In the second line, a system
consisting of left/right moving waves is acted on by a
transfer matrix. The �rst factor lowers the impedance by
�p; then it propagates freely accumulating phase ��p on
the upper/lower components, and �nally the impedance
is restored to its original value. The net e�ect is the
same as propagating at an average impedance �p and
accumulating the same phase.
In this analogy, a wave travelling to the right, outside

the array, corresponds to a spin-up (along OZ) state, and
a wave travelling to the left, to a spin-down state. When
a right-moving state encounters a potential, it is partly
transmitted and partly reected. Analogously a spin-up
state placed in a magnetic �eld oriented at polar angle
� will precess around the �eld direction, thereby acquir-
ing some spin-down (reected wave) component. For a
symmetric potential cell, the magnetic �eld direction lies
in the Y Z plane. For a general cell, the polar angle is
the same, but the azimuthal angle is �: the asymmetric
system di�ers only by a rotation around OZ.
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FIG. 1. Pseudo-spin path viewed from above for a periodic

system with �X = 0:5, N = 7.

This analogy is very helpful in seeing how a system
will respond to a sequence of potential cells. For identi-
cal cells, �p = �; �p = �, the rotations are all about the
same axis. The spin precesses on a cone whose polar an-
gle is �; the cone intersects the sphere in a circle. Viewed
from above the unit sphere, the spin moves on a circle
centered at �. If there are N such cells, the total angle
of rotation will be 2N�. The condition for perfect trans-
mission is that the spin state be returned to lie along OZ;
this requires 2N� = 2�m where m is an integer. Within
an allowed band, the Bloch phase increases by �, so the
possible values are m = 1; 2; � � �N � 1. An array of N
identical cells will show N � 1 narrow resonances in each
allowed band [19]. They are narrow, for when the energy
is varied slightly, changing � ! � � ", the total phase
changes by 2N", which quickly moves o� the resonance
condition. This situation is illustrated in Fig. 1 for an
array of seven cells, and for m = 1; the phase angle is
o� resonance by 1%. One is looking down on the sur-
face of the sphere from a point above the center of the
circle. The radial lines mark o� sectors of angular width
2� � 2�=7.
If the cells are not identical, but the impedance pa-

rameters �p are close, then the sequence of rotations will
be on arcs of circles whose centers jump about. So long
as these jumps are small compared to the radii of the
circles, the total angle of rotation will be just twice the
sum of the angles �p. The behaviour of the array will
then be similar to a strictly periodic array. It will still
wind N times around a closed path, coming more or less
close to the origin (at OZ) once on each traversal. We
will have similar behaviour to the case of identical cells,
but with the sum of the �p playing the role of N�. This
is the \mean phase lemma".
Conversely, if the �p are increasing rapidly, so the cen-

ter of each rotation lies outside the circle of the previous
one, then the path followed on the surface of the unit
sphere will not wind more than once around the circum-
ference. We will see that this topologically very di�er-

ent behaviour is characteristic of impedance transformers
and �lters.

III. QUARTER-WAVE IMPEDANCE

TRANSFORMER

In this section we will show that the criteria for
quarter-wave �lters can be easily understood from our
spin analogy. Further we will show that the classic recipes
do not apply to the semiconductor case unless signi�cant
modi�cations are made. These lead to the conclusion
that a Poisson distribution of the impedance steps be-
tween cells is more appropriate than is a gaussian recipe.
For an electron in the conduction band, a layered het-

erostructure acts as a series of non-overlapping potential
cells. A cell can contain any number of homogeneous lay-
ers, or may even be continuously graded. No matter how
complicated the potential (or the e�ective mass) may be,
the scattering properties of a single cell are described
by just two (or three) energy-dependent parameters �; �
(and �).
As discussed in [9], the �rst step in designing an energy

band-pass �lter is to �nd a cell with an allowed miniband
covering the desired energy range. If it is the lowest al-
lowed band, then cos �(E`) = 1 and cos�(Eu) = �1 at
the lower and upper band edges. By placing a number
K of such cells together, a well de�ned miniband will be
obtained with essentially zero transmission outside the
allowed band. If the cell is symmetric, any number of
them will also be reection symmetric, and the transfer
matrix MK

X for this array will be described by just two
parameters, �X and �X .
An ARC consists of an additional potential vA(x)

placed on one side of X and its reection v�A(x) on the
other side. The corresponding transfer matrices will be
denoted A and A� . According to the spin analogy, A ro-
tates the spin by angle 2�A about an axis speci�ed by its
impedance parameters �A and �A. For simplicity con-
sider the case where both X and A are symmetric cells.
Then the axes of rotation both lie in the Y Z plane. At
an arbitrary energy in the allowed band, if A rotates the
initial spin-up state by angle �, it will be converted to
a state whose spin is oriented along another radius in
the Y Z plane. By choosing �A = �X=2, the new orien-
tation of the spin state will coincide with the direction
�X . Passing through the potential cells X alters the spin
state only by a phase factor ��X , because the new state
is an eigenstate of spin along this direction.
Rotation by angle � means that �A = �=2, so that

the ARC cell vA must be a Bragg reector at the desired
energy. This is the solution obtained in [9]. The down-
stream ARC cell A� then rotates the spin state back to
lie along OZ, representing a wave moving purely to the
right, and giving perfect transmission. The path followed
by the pseudo-spin state is illustrated in Fig. 2(a). It
doesn't matter how many cells of type X there are, be-
cause once the state is aligned along the direction �X it
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is in a spin eigenstate along that direction, and preces-
sion gives just an overall phase, which does not alter the
probability of being in a spin-up or down state along OZ.
Such a state is a scattering eigenstate for the potential
vX .

a) N = 1 ARC
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  mu  
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mu_k

1 XZ

b) N = 2 ARC
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c) N = 3 ARC
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FIG. 2. Pseudo-spin paths for binomial ARCs. The �k are
o� the Bragg point by (a) 1%, (b) 8%, (c) 12%. The �k are
in units of �X .

An ARC may consist of more than one cell, for example
two as illustrated in Fig. 2(b), or three in 2(c). In the
general case we will number the cells 1; 2; � � �N on the
left, with the reected ordering on the right. Let MX

be the transfer matrix for the central cells, (the original
system). Then, using the representation of eq. 10, the
total transfer matrix can be written in two equivalent
forms:

MT = AMX A�1�

= AY (�X)P (�X)Y (��X )A�1�

�M P (�X)M
�1� : (11)

In the �rst form,A represents an impedance transformer,
which takes the incident plane wave and prepares it to
propagate through the central cells, described by MX .
In the second form, A is combined with a step-up op-

erator Y (�X ) which undoes this, rotating the state back
to the OZ axis, so that the propagator P (�X) need only
supply the phase factors ��X as the wave propagates
through the central cells. In detail, M consists of

M =M1M2 � � �MN Y (�X ) : (12)

According to the spin picture, When M acts on a state
j+; Z > which is \spin-up" along OZ, it has to leave it
in the same condition. This requires that the element
M21 = 0. The reected operator M�1� performs the in-
verse rotations, restoring the state to be spin-up along
OZ. It is su�cient to construct M in order to make a
band-pass �lter. Incidentally, this proves that the design
of a pass-band �lter, at the design energy, does not in-
volve the Bloch phase �X of the central cells. While it
may appear complicated to combine Y along with A, it is
actually a big simpli�cation, because each of the transfer
matricesMk needs to be considered only once, not twice
as would be the case if we worked with MT .
In the classic designs, each cell of a multi-cell ARC is

reection symmetric, so M and M�1� di�er only in the
reverse ordering of the cells, and replacement of the step-
up impedance factor Y (�X ) by a step-down, Y (��X ). In
this case, the simplest solution is to make each cell into
a Bragg reector at the design energy, with �p = �=2.
Such a solution was illustrated in Fig. 2(b), for N = 2
cells. The question arises, what possible advantage can
come from using two cells as opposed to a single cell? The
answer is found by supposing that the energy is varied
by a small amount, so that �p ! �=2� "p. Then on the
�rst rotation, the spin does not quite reach the axis. In
the small angle approximation, the second rotation has
a head start by 2"1, and it will land within 2("2 � "1)
of the point �X . If the phases �p are in fact equal, then
the two deviations cancel out, and the N = 2 �lter will
have �rst order stability. Since the single cell �lter has
no such compensation available, it will go o� resonance
as soon as the energy varies from the design energy. The
two cell �lter goes o� resonance only when the squares
"2p become signi�cant.
The situation of equal Bloch phases in every cell gener-

ally applies in optics or microwaves, because (for normal
incidence) the phase accumulated in passing through a
cell is just �p = k0npap, the product of wave number in
vacuum, the index of refraction and the cell thickness.
(Usually a cell is a single homogeneous layer in optics.)
If the �p are arranged to be equal at the common Bragg
point, then they will remain equal so long as the index
of refraction is constant. This is not the case however
in semiconductors because the wave number k(x) is the
square root of an energy di�erence, as in eq. 1.
For N = 3 cells the classic Butterworth �lter design

has �1 = 1=8�X , �2 = 1=2�X and �3 = 7=8�X . In
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units of �X , the rotations of the spin analogy have radii
1=8, 1=4, and 1=8, as illustrated in Fig. 2(c). It is not
hard to see that this model also shows linear stability
as the energy varies from the multi-Bragg point, with a
deviation in angle of twice "1 � 2"2 + "3 which vanishes
when the "p are all equal. Moreover, this design also
exhibits quadratic stability, de�ned as second order in the
"p. In other words, the zero of the reection amplitude
at the design energy will be a second order zero, leading
to a atter maximum in transmission. Comparing the
three panels of Fig. 2, one sees that the Bloch phases �k
can be further o� the Bragg point when N is larger, and
the device can still give very good transparency.

IV. ANALYTICAL DEVELOPMENT

At this point it is useful to derive and extend the above
results analytically. From eq. 10, for each symmetric cell
included in the ARC transfer matrix M , we can write

Mp = �i sin �p
�
U (2�p) + i cot�pI

�
: (13)

For brevity, we will write Up for U (2�p). At the design
energy, every �p = �=2, and M reduces to a product
of U -matrices. This product is easily reduced because
the multiplication table for the U and Y matrices is very
simple:

U (�) =

�
cosh �=2 � sinh�=2
sinh�=2 � cosh�=2

�

Y (�) =

�
cosh �=2 sinh�=2
sinh�=2 cosh�=2

�
= e(�=2)�x

UaUb = Y (�a � �b)

UaYb = U (�a � �b)
YaUb = U (�a + �b)

YaYb = Y (�a + �b) : (14)

Like matrices give a Y ; unlike give a U . If a Y is to
the left we get the sum of arguments, and if a U , the
di�erence. Therefore at the Bragg point we can reduce
the product as follows:

(i)N M =
NY
p=1

U (2�p) Y (�X )

= Y (2�1 � 2�2)
NY
p=3

U (2�p) Y (�X )

= U (2�1 � 2�2 + 2�3)
NY
p=4

U (2�p) Y (�X) � � �

(15)

If N is even we arrive at the penultimate step with a
Y whose argument is an alternating sum of �'s, ending
with �2�N . The last multiplication uses the rule for

Y �Y , which adds �X . When N is odd, we end up with
a U , whose argument ends with +2�N , and the U � Y
product gives a Y whose argument (denoted ��) ends
with 2�N � �X . In either case, the matrix element is
M21 = sinh��, and the condition for zero reection is
that �� = 0. Explicitly,

�� =
NX
p=1

(�)p+12�p + (�)N�X (16)

All the equations we will deal with are simpler when
written in terms of the steps in �, (including �0 = 0),
which we de�ne as �p = �p+1 � �p. Then we can write

�� =
NX
p=0

(�)p�p = 0 while

�X =
NX
p=0

�p : (17)

For a single cell ARC, N = 1, the solution is �1 =
�0 = �X=2, so �1 = �X=2. In terms of indices of refrac-
tion, for the optical case this is the well known solution
n1 =

p
nX n0.

For more than one cell these two conditions are not
su�cient to select a unique solution. A solution can be
written down by considering the function

FN (x) =
NX
p=0

xp�p with

FN (1) = �X ; FN (�1) = �� = 0 : (18)

The Butterworth [6] or binomial solution makes FN pro-
portional to (1 + x)N , by setting

�p =
�X
2N

NCp = �N�p ; (19)

So it is the steps, not the impedances themselves, which
are the simple quantities. The N = 2 and 3 �lters drawn
earlier are of this type. The solution is plausible if you
interpret x = e2i� as being the same for every cell, and
taking the value �1 at the multi-Bragg point. Then the
matrix element M21 will have an N 'th order zero there.
Even for moderately large N , the limit of the binomial

distribution is a gaussian. With the steps �p obeying
a gaussian law, the �p will be distributed like the error
function. This may be the basis for the folklore that a
gaussian distribution of barrier heights should be associ-
ated with ARC cells.

V. STABILITY CONDITIONS

For small deviations from the multi-Bragg point, we
write �p = �=2 � "p, and in eq. 13, the cot�p becomes
tan "p � tp for short. We treat the tp as small quantities,
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and derive stability conditions which involve m of them
at a time.
Using the representation eq. 13 in the product of eq.

12, and grouping terms with the same number of tp, the
general form of the transfer matrix becomes

M =
NY
p=1

(�i sin�p)
h NY
p=i

Up + i

NX
k=1

tk
Y
p6=k

Up

�
X
k<m

tktm
Y

p6=k;m

Up

�i
X

k<m<r

tktmtr
Y

p6=k;m;r

Up + � � �
i
Y (�X ) (20)

Using the multiplication table for the matrices U it is
straightforward to write down the terms of any order.
The leading term involves no tk. Then there are sets of
terms which involve 1; 2; 3; :: of the tk. The �rst N �
1 of these sets give stability conditions which must be
imposed to make the resulting transmission amplitude
as at as possible in the region around the multi-Bragg
point. The last term involves the product of all the tk
and is simply

M = Y (�X )
NY
p=1

cos�p : (21)

This is what remains when all the stability conditions
have been satis�ed, and is the generalization of the But-
terworth �lter for unequal phases �p.
The linear stability terms are obtained by including

one of the tk = tan "k in place of the factor Uk in the
product eq. 12. The typical contribution is

�(1)M � U1 :::Uk�1 tk Uk+1 :::UN Y (�X ) ; (22)

where Up = U (2�p). Because Uk is missing from the
product, the result of these multiplications is to arrive at
either a U or Y matrix whose argument di�ers from �� in
two respects: (i) the argument 2�k is missing and (ii) the
terms following �k�1 have the wrong sign as compared
to ��. The typical case is

2�1 � 2�2 + � � �+ 2�k�1 � 2�k+1 � � �
= ��0 + 2�1 � � � �+ 2�k�1 � �k + �k � 2�k+1 � � �
= �0 ��1 + � � � ��k�1��k +�k+1 + � � �
which is to be compared with �� :

0 = �0 ��1 + � � � ��k�1+�k ��k+1 + � � � ; (23)

The contribution of this term to M21 involves a factor
tk times the sinh of this argument. Again the aim is to
make the 2; 1 matrix element vanish, which means that
the sum of all these contributions must be zero. We can
simplify the argument of the sinh by adding to it ��
which is already zero, (the last line above). Then the
terms following �k�1 cancel out. As a result we can
write the linear stability condition as follows:

�(1)M =
NX
k=1

tk sinh
�k�1X
p=0

(�)p�p

�
= 0

� t1 sinh�0 + t2 sinh(�0 ��1)

+t3 sinh(�0 ��1 +�2) + � � � ; (24)

In the small angle approximation for the hyperbolic func-
tions, this expression agrees with the linear stability con-
dition for the �lters drawn in Fig. 2.
The quadratic stability condition arises from terms

where two of the matrices Uk Um are replaced by tk; tm
factors. For the three cell case N = 3, one has

t1t2 U3Y (�X ) + t1t3 U2Y (�X ) + t2t3 U1Y (�X )

= t1t2 sinh(�3 � �X=2) + t1t3 sinh(�2 � �X=2)

+t2t3 sinh(�1 � �X=2)

= t1t2 sinh(�1 � �2) + t1t3 sinh(�1 � 2�2 + �3) +

t2t3 sinh(�3 � �2)
= t1t2 sinh(��1) + t1t3 sinh(�2 ��1) +

t2t3 sinh(�2) : (25)

It is easily seen that this vanishes for the binomial �lter,
providing that the tk are all equal. But for semiconduc-
tors where they are unequal, it is a new condition to be
imposed on the �k.
The general m'th order stability condition is worked

out in Appendix A. It takes into account all terms where
m of the tk are involved, for m = 1; 2; ::: (N � 1).

VI. PRACTICAL APPLICATION OF THE

STABILITY CONDITIONS

For an N -cell impedance transformer. eq. 20 expresses
M as a sum of 2N terms, which fall into N + 1 classes
labelled by the number m of tk occurring in the terms
of class m. The matrix element M21 must be zero for
perfect transmission into the central cells X.
The vanishing of the m = 0 term is expressed by

�� = 0 in eq. 17. It involves just the alternating sum of
the steps �k, k = 0:::N . The linear, quadratic and higher
stability conditions involve products of the tk times hy-
perbolic sinh's whose arguments are speci�c linear com-
binations of the �k. In the optical and microwave ap-
plications, the tk are the same for all k, so their value is
just an overall factor that can be dropped from all terms
in class m. In e�ect one can set tk = 1.
In semiconductors it is found that the strongest barrier

has a cos�k that varies most rapidly with energy, and the
others vary progressively less rapidly. It will be seen in
the next section that in the vicinity of the multi-Bragg
point, the tk vary linearly with energy. To the extent
this is true we can replace the tk by their slopes, taking
say the weakest one to be unity. A reasonable �rst ap-
proximation to this regime is to set tk = k, which we will
call the Linear Model. This contrasts with the situation
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in optics, where tk =constant applies, at least for normal
incidence.
If we further make the small (hyperbolic) angle ap-

proximation, then the terms of class m reduce to a linear
combination of the unknowns (�)k�k multiplied by sums
of products of the tk. For example, for N = 3, from eqs.
17, 24 and 25 we can write X

p

�p = �X

X
p

(�)p�p = 0

(t1 + t2 + t3)�0 � (t2 + t3)�1 + t3�2 = 0

�(t1t2 + t1t3)�1 + (t1t3 + t2t3)�2 = 0 : (26)

It is convenient to take Dp = (�)p�p as the unknowns;
this removes most of the negative signs from the equa-
tions. Leaving aside the top equation, which gives the
overall normalization of the solution, a bit of algebra puts
the remaining three into the form

 
1 1 1 1
0 x1 x2 x3
0 x21 x22 x23

!0B@
D0

D1

D2

D3

1
CA = 0 ; (27)

where xk = t1 + � � �+ tk is a partial sum of the slopes.
We can solve these equations for D1; D2; D3 in terms
of D0 and then use the top equation of 26 to give the
normalized solutions. In this case (but not for larger
N ), the coe�cient matrix is equivalent to the well-known
Vandermonde matrix, and the solution can be written
down immediately [21].
In general, the stability conditions of order m =

1; 2; ::: (N � 1), together with eqs. 17 become a set of
N + 1 linear equations for the unknowns �k, and a sim-
ilar strategy can be used to solve them. An example is
shown in Table I, for N = 7, where we have set all the
tk equal to unity, appropriate for optics. As expected,
the solution is the binomial �lter for N = 7. In contrast,
in Table II we show the equations for the linear model,
with tk = k. The solution, shown in Table III is now
completely di�erent. The �rst few steps in �k are much
larger than in the binomial �lter, and the last few steps
are very much smaller. The reason is that the relatively
rapid variation of the last few Bloch phases can only be
countered by making the radii of the circles of (spin) ro-
tation as small as possible. The structure of a �lter for
semiconductors therefore will have a very di�erent pro�le
than for optical or microwave applications.
This di�erence in character is illustrated in Fig. 3, for

a 15 cell ARC �lter. The steps �k for the binomial �lter
are peaked at k = 8, and are well �tted by a gaussian
distribution. In contrast, for the linear model, the steps
(at left) peak at k = 2 and are better represented by
a Poisson distribution than by an asymmetric gaussian
having the same average value.
The general solution of the linear model for N -cells is

�p = (2p+ 1)
N !

(N � p)!

N !

(N + p+ 1)!

=
2p+ 1

N + p+ 1
NCp

N+pCp
; p = 0 � � � N : (28)

For large p � N the linear model steps are exponentially
small. To compensate, �0 = 1=(N +1), which for N > 4
greatly exceeds the value for the binomial or Butterworth
�lter, 2�N . The Poisson distribution Pk = ake�a=k! can
be �tted by setting �0 = e�a to �x the mean value a.
Alternatively we can choose a to give the second moment
of the distribution of steps, as was done in the �gure.
One conclusion we can draw is that a semiconductor

band-pass �lter should have many fewer cells than a sim-

TABLE I. Equations which determine the �k for the
N = 7 �lter, in the optical case

�0 �1 �2 �3 �4 �5 �6 �7 = value
7 -6 5 -4 3 -2 1 0

-6 10 -12 12 -10 6 0
35 -20 15 -16 19 -20 15 0

-20 20 -16 16 -20 20 0
21 -6 11 -12 9 -10 15 0

-6 2 -4 4 -2 6 0
1 0 1 0 1 0 1 0 �X=2
0 1 0 1 0 1 0 1 �X=2

TABLE II. Equations which determine the �k for the
N = 7 �lter, in the Linear Model

�0 �1 �2 �3 �4 �5 �6 �7 = value
28 -27 25 -22 18 -13 7 0 0
0 -27 75 -132 180 -195 147 0 0
392 -333 245 -176 168 -221 245 0 0
0 -333 705 -792 600 -585 1029 0 0

13132 -8028 4870 -7018 7782 -3562 11368 0 0
0 -669 630 -319 875 -130 1029 0 0
1 -1 1 -1 1 -1 1 -1 0
1 1 1 1 1 1 1 1 �X

TABLE III. Linear Model solutions �k for the N = 7 �lter

k = �k �k+1 Poissonk �Poiss
0 0.125 0.125 0.166 0.166
1 0.2917 0.4167 0.298 0.464
2 0.2917 0.7083 0.268 0.732
3 0.1856 0.8939 0.160 0.892
4 0.07954 0.9735 0.072 0.964
5 0.02244 0.9959 0.0259 0.990
6 0.00379 0.9997 0.0077 0.998
7 0.000291 1 0.0002 0.998
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ilar optical or microwave �lter. Most of the work will be
done by the �rst few cells, so the later ones contribute less
to the performance. This is useful information because it
is easier to make a semiconductor device with fewer cells.
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FIG. 3. Steps �k for binomial and linear models, compared
to gaussian and Poisson distributions.

VII. AN EXAMPLE

On the web site of Gornik's group in Vienna, Coquelin
et al. [8] presented an example of a six barrier system
which achieves 83% transmissivity over the �rst allowed
miniband. The structure was modelled as a sequence of
AlxGa1�xAs quantum barriers with x = 0:3, and GaAs
wells. Viewed as a 1D potential array, the barrier heights
are 290 meV, and the widths were varied according to a
gaussian law [15], taking the values 9; 28 and 40�A. The
well widths were set at 30�A.
We can consider this an example of an ARC system

with N = 2 cells, surrounding two central cells X. We
de�ne a cell to consist of one barrier and a 15�A spacer
on each side of it. In our calculation, we took the e�ec-
tive mass at the conductance band edge to be 0:092 and
0:067 respectively, and the energy gaps 1800 and 1424
meV, based on Davies [20]. We took account of energy
dependence of the e�ective masses following the recipe of
Nelson et al. [17]. Finally, following Pacher et al. [7] we
took the barrier height to be 290 meV. As a check of these
parameters, we reproduced the �ve peaks shown between
128 and 160 meV in the �gure of [8] for a periodic six-cell
array.
Computing the Bloch phases and impedance parame-

ters for each cell of their gaussian array, one �nds that
every cell is a Bragg reector close to the band center.
The multi-Bragg character was improved by using 10�A
for the width of the weakest barrier and 15:05�A for the
corresponding half-well; with these small adjustments,
the commonBragg point is at 138:3meV.We will refer to
this as the \adjusted" Coquelin array. The performance
is illustrated in Fig. 4 (a), where we plot jr=tj2 for the

entire device, on a natural log scale. This is a more sen-
sitive presentation than simply plotting the transmission
probability which would merely show a at band with
values at jtj2 = 1.
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FIG. 4. Analysis of the (adjusted) six cell device of Co-
quelin et al. a) jr=tj2, b) cos �k, c) �k.

The �p are plotted in Fig. 4 (c); at the Bragg point
they take values 0:580 : 1:623 : 2:319 which are very
nearly in the ratio 1 : 3 : 4 of a classic Butterworth �lter.
However, moving away from the multi-Bragg point, the
slopes of the cos�p lines, seen in Fig. 4 (b), are in the
ratio 0:17 : 0:51 : 1:0 which is very far from equal slopes;
indeed, rather close to the linear model.
Taking the parameters tp to be the above mentioned

slopes, and solving the stability conditions predicts that
the �p should be close to those of the linear model,
which are 1=3; 5=6; 1 times �X . This suggests that im-
proved performance should result from changing the bar-
rier widths, to produce impedances which are consistent
with the ensuing slopes.
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FIG. 5. Analysis of the self-consistent N = 2 ARC device
derived from Coquelin et al. a) jr=tj2, b) cos �k, c) �k .

Because the barriers are relatively high, the �p are
roughly proportional to the widths. Keeping the cen-
tral cell parameters �xed (bX = 40�A), we found that
with b1 = 15:4�A and b2 = 35:4�A, the resulting �p took
values 0:893; 2:052, compared to �X = 2:319, which are
self-consistent with the solution of the stability equations
using t1 = 0:24, t2 = 0:76. In Fig. 5 (c) we show the
�k(E) across the allowed band. The values are quite at
in the center of the band, though all three curve upwards
as the band edge is approached. It is not necessary for
the �k to be strictly constant; if their ratios are constant
the spin analogy shows that the ARCmechanismwill still
work. The cos�p are shown in Fig. 5 (b) along with the
linear approximation from which the tp were estimated.
In Fig. 5 (a) we show, on a log scale, jr=tj2 for this so-
lution. This is to be compared with Fig. 4 (a), which
used the (adjusted) Coquelin parameters. The average
transmissivity over the band, � , has increased from 0.83
to 0.90.
In Fig. 6 we show the trajectories of the spin analogy,

at three energies. In the �rst two cases (near the band

a) E = 134 meV
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  mu  
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1 2 
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b) E = 140 meV
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Path
mu_k
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c) E = 150 meV
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  mu  
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mu_k

2 X 1 Z 

FIG. 6. Pseudo-spin trajectories for the self-consistent
N = 2 device at three energies.

center) the spin orientation has indeed been moved to
the point �X , and then back to the origin. This con-
�rms that linear stability has been satis�ed for the self-
consistent �lter. The third panel (c) is at 150 meV, in a
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deep trough of jr=tj2. The performance is degrading and
is only maintained because the ARC cells bring the spin
to a point below �X , and the two central cells bring it
(almost) to the mirror image point above the axis. Then
the downstream ARC cells can bring it back to OZ.
The performance should not depend on the number of

central cells. This is true close to the design energy, but
not further away, as seen in the previous paragraph. In
Fig. 7 (a), (b) we show log jr=tj2 for the same ARC with
K = 4 and K = 6 central cells. Additional humps are
seen, the number increasing like K, but always lying be-
low some upper limit. This limit is related to the envelope
of transmission minima, as discussed in [9]. The width of
the region with good performance widens slightly as K
increases. Mostly this is the expected e�ect of the band
edges becoming better de�ned by the central periodic
structure. The transmissivity rises from 0.902 to 0.912
(K = 4) and 0.915 (K = 6), using the self-consistent
N = 2 parameters.
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FIG. 7. jr=tj2 for N = 2 ARC, with four and six central
cells, self-consistent solution.

Some further improvement can be obtained by small
variations in the parameters. Basically this involves a
trade-o�, making the inside humps of jr=tj2 a little higher
and the outlying ones a little lower. One gains a bit on
the width of the region of low reectivity, which keep-
ing the value under some maximum, say e�5. Our the-
ory is based on assuming constant �p and tp, but both
of these break down as you move away from the multi-
Bragg point. The small adjustments gain on the edges
at the price of not hitting the target at the Bragg point.
(In optics or microwaves, such a �t is referred to as a
Chebysche� �lter. In our case of unequal �p, one can-
not use the Chebysche� polynomials, but rather the in-
tent, which is to widen the pass-band while maintaining
a maximum value on the reectance.) The best �t does
depend on K because the humps that are being reduced
have locations which depend on K.
We conclude that the ARC obtained from solving the

stability equations has improved the �lter performance
by about 10%, or close to half the gap from ideal perfor-
mance, even for N = 2 cells.
Further improvement is obtained by using a three or

four-cell ARC. The parameters of these ARC solutions
are shown in Table IV. The barrier widths are in �A,
while the other values are dimensionless. In all cases
the well widths are 30�A, except for the weakest barrier
where 30:05 is maintained. The di�erence between the
self-consistent and modi�ed solutions is always small, but
there is a gain in average transmissivity.

TABLE IV. Barrier widths, tp and �p for N -cell ARCs,
both self-consistent and modi�ed �ts.

N type b1 b2 b3 b4 bX
t1 t2 t3 t4

� �1 �2 �3 �4 �X
2 adj. 10.0 28.0 40

Coq 0.17 0.51
0.828 0.580 1.623 2.319

2 s-c 15.4 35.4 40
0.24 0.76

0.902 0.893 2.052 2.319

2 mod 16.4 35.3 40
0.25 0.73

0.920 0.951 2.047 2.319
3 s-c 12.4 31.1 38.6 40

0.21 0.64 1
0.942 0.719 1.803 2.238 2.319

3 mod 12.4 30.4 38.2 40
0.21 0.63 1

0.944 0.719 1.763 2.215 2.319

4 s-c 10.3 27.6 36.6 39.3 40
0.18 0.50 0.84 1

0.962 0.597 1.600 2.122 2.279 2.319
4 mod 10.3 27.5 36.3 39.2 40

0.18 0.50 0.84 1
0.964 0.597 1.594 2.105 2.273 2.319
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In Fig. 8 we show plots of log jr=tj2 for the modi�ed
solutions. They show that the �lter band width has in-
creased as compared to the N = 2 �lter. Note the change
of vertical scale between panels (a) and (b) by a factor
e�2.
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FIG. 8. jr=tj2 forN = 3 and N = 4 ARCs, with parameters
optimized.

VIII. CONCLUSION

We have used the analogy between potential scattering
and precession of a spin-half system, to provide a simple
and intuitive picture of the workings of a quarter-wave
impedance transformer or pass-band �lter. Based on this
picture we have identi�ed the stability conditions which
take into account the di�erent rates of variation of the
cos�p with energy. Enforcing these conditions makes an
N 'th order zero of the reection amplitude for a system
with an N -cell antireection coating. The rules for writ-
ing down these conditions are given in Appendix A.

Under the small-angle (hyperbolic) approximation, the
stability conditions become a set of N+1 linear equations
for the impedance steps �p. When the Bloch phases of
the cells vary at the same rate, as in optical ARC's, the
solution of these equations is the well-known binomial
�lter, eq. 19. For semi-conductor superlattices, the rate
of variation of the Bloch phases depends strongly on the
strength of the potential cell. A reasonable �rst approxi-
mation is provided by the linear model, in which tp = p.
We have given the exact solution of the linear model in
eq. 28. As seen in Fig. 3, the steps of the linear model
are close to a Poisson distribution, completely di�erent
from the gaussian limit of the binomial distribution.
For arbitrary values of the tp, the stability conditions

can be computed and the linear equations solved for the
corresponding �p. A numerical strategy for computing
the coe�cient matrix is outlined in Appendix B. This al-
lows for an iterative approach to design of impedance �l-
ters. We have illustrated this process by �nding a system
similar to that of Coquelin et al. Their system was shown
to be a Butterworth �lter. By adjusting it to satisfy the
stability conditions we improved the average transmissiv-
ity from 0.83 to 0.90 over the allowed band. Increasing
the number of ARC cells provides further improvement.
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APPENDIX A: GENERAL STABILITY

CONDITION

The stability condition of order m includes terms
where some set k = k1; k2; � � �km of the tk's replace the
corresponding factors Uk in the expansion eq. 20. We de-
�ne the resulting 1; 2 matrix element contribution of this
term as sinh�(k1; k2; � � �km), times the product of the
corresponding tk, and with the requisite number of fac-
tors of �i. The case m = 1 was treated in full in the main
text, as was m = 2. Learning from these examples we
can state the general rule: the argument �(k1; k2; � � �km)
involves a sum of the (�)p�p, each with its proper sign.
If m is even, then the included terms are those between
k1 and k2 � 1, then from k3 to k4 � 1, etc. When m is
odd, however, the �rst sum runs from p = 0 to k1 � 1,
and then successive groups run from k2 to k3 � 1, etc.
In every case the last group ends at km � 1. The reason
is that removal of any of the Up matrices causes a glitch
in the progression of signs, and with an odd number of
glitches, the �nal entry �X will occur with the \wrong"
sign. Then we must add �� to remove �X from the phase.
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Conversely, with an even number of glitches we must sub-
tract ��. Addition causes the �rst group of entries to be
included in � while subtraction removes them.
We can now write down the general term in the ex-

pansion of the transfer matrix for N cells. The leading
term is the product of sin�p times sinh��. (See eq. 20.)
Dropping an overall phase, this contributes to the real
part of r=t for the system. The m = 1 terms, eq. 24, con-
tribute to the imaginary part of r=t. In them, one of the
sines is changed into a cosine; which is accounted for by
the factor tp. In general, the odd-order corrections con-
tribute to the imaginary part and the even order ones to
the real part (or vice versa depending on the parity of N ).
There are altogether N such correction types, which we
call the stability conditions. Along with the normalizing
condition

P
�p = �X , they are su�cient to determine

the values of the �p (p = 0; 1; ::: N � 1). This solution is
valid over a range of energies where the tp vary linearly
with energy around the multi-Bragg point. This allows
the design of a generalised Butterworth transformer for
application to electrons in semiconductors.

APPENDIX B: PROGRAMMING THE

STABILITY EQUATIONS

The expansion eq. 20 contains 2N terms, which are
in (1,1) correspondence with the binary integers j =
[bNbN�1 � � �b1]. (The bq are binary bits.) Those j which
have m non-zero bits contribute to the m'th stability
equation. For each bk = 1, a factor tk is included in the
coe�cient.
We make the small-angle approximation sinh� � �.

The stability equations reduce to the form

N�1X
p=0

C(m)
p (�)p�p = 0 ; m = 0 � � � (N � 1) (B1)

Starting with j = 0, up to 2N � 1, each binary inte-
ger is parsed, assigned to class m, and the argument
�(k1; k2; :::km) is constructed as stated in Appendix A.
Then for each of the �p occurring in �, the coe�-

cient C
(m)
p is augmented by the product of tk, with

k = k1; :::km. In this way the N � 1 stability equations
can be constructed using only N2 storage locations.
The j = 0 term corresponds to the basic equation eq.

17 for �� = 0. As m ranges over the values 0; 1; ::: N�1,
we obtain N such equations, in the N + 1 unknowns �p.
They are supplemented by the second equation in 17,
which normalizes the sum of the �'s to �X , and makes
the system soluble. �N occurs only in this extra equa-
tion, so one strategy is to solve the stability equations for
the �p, p = 0; 1; :::N � 1 in terms of �N , and then use
the last equation to complete the solution.
Obviously, as N increases, the time taken to accumu-

late the 2N contributions to the coe�cients increases ex-
ponentially. Our code, written in C++, works well up

to N = 24. The method is general but for larger N one
needs to use higher precision integer representation for j.
Fortunately, for the binomial and linear models, we have
analytic solutions for general N , and these can be used
to check the computer programme. The linear model
solution is a good starting point from which to seek a
self-consistent solution for the �p and tp.
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