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We design an N -cell anti-reection coating for electron transport through an arbitrary periodic
semiconductor heterostructure. Stability conditions are derived which allow one to make an N 'th
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I. INTRODUCTION

Recently [1] we considered the design of an e�cient
energy band-pass �lter for electrons in a semiconductor
superlattice, inspired by the recent work of Pacher et al.
[2]. We derived analytical expressions for the parame-
ters of the additional potentials (antireection coating or
ARC) that can be added at both ends of an arbitrary
periodic structure in order to achieve optimal transmis-
sion through the allowed band, treating the ARC as a
single entity. In the present paper we extend our anal-
ysis by taking the ARC to consist of any number N of
additional cells. This allows for signi�cant improvement
in the device properties. As before, the aim is to develop
a general analytical method for the construction of an
ARC which optimizes transmission through the allowed
band. More generally, the aim is to understand the fac-
tors which facilitate the transport of electrons through
layered devices, of which quantum cascade lasers are an
important example.
Two important aspects of our method are these: First,

we use a general parameterization of the transfer matrix
for symmetric potentials (which was invented by Kard
[3] for square potentials only). This separates the prob-
lem into two parts, one being to �nd the optimal val-
ues of the transfer matrix parameters, and the other, to
�nd the precise form of a cell potential that reproduces
these required values. Second, as in our previous arti-
cle [1], we concentrate on the envelope of minima of the
transmission resonances, avoiding the complications as-
sociated with the rapidly oscillating transmission ampli-
tude within an allowed band.
In section II we extend the results of reference [1], to

the present case. In section III we outline the general
method for obtaining an optimal N -cell ARC, which is
developed for the speci�c cases of two to four cells in sec-
tion IV. Numerical examples given in the remaining sec-
tion show that our method produces better performance
than the �fteen cell gaussian recipe of Gomez et al. [4],
with half the number of cells. Our examples show that
transmissivity across the allowed band can reach 95%.

II. THEORY AND METHOD

In the single-band envelope function approximation,
the electron wavefunction satis�es the Schr�odinger equa-
tion including a position-dependent e�ective mass. We
consider an arbitrarily shaped real symmetric potential
v(x) which consists of three parts. The core or central
part is a periodic repetition (denoted vcK (x)) of vc(x)
repeated K times, on the interval 0 < x < Kd. We
denote the additional potentials on each side of the peri-
odic structure as vi(x) and vf (x) respectively. To ensure
reection symmetry of the augmented potential, vf (x)
must be the mirror image of the potential vi(x), while
vc(x) must be reection symmetric itself. A schematic
drawing of such a structure is shown in Fig. 1. The cor-
responding transfer matrices are denoted C for vc(x), CK

for vcK (x), and A, A� for the potentials vi(x), vf (x) re-
spectively. The transfer matrixM for the total structure
is

M = A CK A� : (1)

The matrix A for any real potential can be written in
terms of its reection and transmission amplitudes ra
and ta as [5]

A =

�
a11 a12
a21 a22

�
=

�
1=ta r�a=t

�
a

ra=ta 1=t�a

�
: (2)

The matrix C is expressed similarly with replacement of
a ! c throughout. For the mirror matrix A� = (A�1)�

we have

A� =

�
a11 �a21
�a12 a22

�
=

�
1=ta �ra=ta
�r�a=t

�
a 1=t�a

�
: (3)

If in addition the potential takes a constant value out-
side the region where the foregoing potentials are de�ned,
then conservation of ux implies that both detC = 1 and
detA = 1.
The transfer matrix depends on two complex ampli-

tudes, but the condition on det C leaves just three real
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parameters in general. As our unit cell vc(x) is reection
symmetric, the elements c21 and c12 are purely imagi-
nary, which makes c12 = �c21, leaving just two indepen-
dent real parameters at a given energy. We take one to
be the Bloch phase associated with the in�nitely periodic
potential whose unit cell is vc(x): cos�c = (c11+c22)=2 =
<(1=tc). It is then easily seen that in an allowed band
we can write [3]

C =

�
cos �c � i cosh �c sin�c i sinh�c sin�c

�i sinh �c sin�c cos�c + i cosh �c sin�c

�

(4)

The parameters �c(E) and �c(E) depend on the electron
energy and on the properties of the potential vc(x). In
allowed bands (�1 < cos �c < 1) both parameters are
real. We can call �c an impedance parameter, because
in the case of a at potential, �c = logZ, where Z is the
inverse velocity in that potential [6]. Numerical examples
in section 4 show that �c is approximately constant while
cos�c depends almost linearly on energy across much of
each allowed band,
Transmission through the total system including the

ARC and K central cells can be expressed in terms of
the o�-diagonal element M21 of the total transfer matrix
M as

jTK j
2 =

1

1 + jM21j2
: (5)

After some algebra we express the element jM21j
2 in the

form

jM21j
2 =

���2 � 2�� cos�c + �2
��
���� sin(K�c + �)

sin�c

����
2

; (6)

where the complex parameters �, �, and � are combina-
tions of elements of the matrices C and A:

� = a21a11c11 � a12a22c22 + (a11a22 + a21a12)c21 ;

� = a21a11 � a12a22 ; tan � =
� sin�c

�� � cos�c
: (7)

(If the mirror potential vf (x) is simply identical to vi(x),
as in Ref. [1], there is an additional simpli�cation a12 =
�a21.) Eqs. (6) and (7) are valid for any potential, but in
our case of overall reection symmetry, the parameters �
and � become pure imaginary, and � real. This allows us
to obtain the envelope of transmission minima in allowed
bands, which is a curve independent of K, by setting the
factor sin2(K� + �)! 1 in eq. (6).

jT j2min =
1

1 + j�2 � 2�� cos�c + �2j= sin2 �c
: (8)

Finally, we de�ne the average transmissivity � for elec-
trons passing within the allowed band as

� =
1

(Eh �El)

Z Eh

El

jTK j
2dE : (9)

where El; Eh are the lower and upper band edges. The
ideal �lter would have transmissivity � = 1 in the allowed
band, and jTKj

2 = 0 in forbidden bands. The second re-
quirement is well satis�ed when the number of periods K
is large; in [1] we showed that K = 5 is already su�cient.

III. GENERAL REQUIREMENTS FOR
ANTIREFLECTION COATINGS

Here we study conditions on the additional potentials
vi(x) and vf (x) which will provide the highest possible
transmissivity through the allowed band. By making the
envelope of minima eq. (8) reach perfect transmission
somewhere near the center of the allowed band, we al-
ready obtain a reasonable transmission pro�le, since the
�rst derivative of jT 2jmin is also zero at this point. This
ensures that deviations of jTKj2 from unity are small
except close to the zone boundaries, where transmis-
sion necessarily tends to zero. The speci�c design en-
ergy Eb where we will force perfect transmission is the
Bragg energy of the cell vc(x) where cos �c(Eb) = 0, i.e.
�c(Eb) = �=2. Other choices are possible, and sometimes
preferable, for example the exact mid-point of the band,
i.e. Em = (El +Eh)=2, as in Ref. [1].
To make the envelope touch unity at energy Eb, it is

necessary and su�cient that both � = 0 and � = 0 at this
point. As a result, the elements of the transfer matrix A
for the ARC coating vi(x) must satisfy two conditions:

a21(Eb)a11(Eb)� a12(Eb)a22(Eb) = 0

a22(Eb)

a21(Eb)
+
a12(Eb)

a11(Eb)
+ 2 coth�c(Eb) = 0: (10)

Now we turn to the detailed internal structure of the
ARC layer vi(x). For application to semiconductor het-
erostructures, we can consider the device to consist of
a �nite number of homogeneous layers. These can be
grouped into a (generally smaller) number N of reec-
tion symmetric cells. We denote the potential in the p'th
cell by ap(x) and the corresponding transfer matrix by
Ap. The matrix A becomes a product

A =
1Y

p=N

Ap ; where Ap =

�
cos �p � i cosh�p sin�p i sinh�p sin�p

�i sinh �p sin�p cos�p + i cosh �p sin�p

�
(11)

One way (see the Appendix) to satisfy the �rst equation
in (10) is to take all cos �p(Eb) = 0, i.e.

�p(Eb) = �=2 ; p = 1; 2:::N : (12)

Such an ARC is called a quarter-wavelength coating and
the energy Eb (design energy for the ARC) becomes a
common Bragg point for the ARC cells. Eq. 11 then
reduces to
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A(Eb) =
1Y

p=N

�
�i cosh �p i sinh�p
�i sinh�p i cosh �p

�
; (13)

where all �p are taken at the energy Eb. This can be
evaluated as

A(Eb) =

�
(�i)N cosh �a iN sinh�a
(�i)N sinh�a iN cosh �a)

�
; where

�a =
NX
p=1

(�1)N�p�p (14)

is the impedance parameter �a for the complete ARC
coating vi(x) at energy Eb. The second equation in (10)
then leads to the requirement

�a = (�)N�1�c=2 : (15)

According to eqs. (12) and (15), if the ARC coating vi(x)
consists of a single cell a1(x), its parameters are

�1(Eb) = �=2 ; �1 = �c=2: (16)

This is the result of [1]. (For N = 1, taking the ARC
to be a Bragg reector is not a choice, but necessary, as
shown in [1].)
For N > 1 cells, eqs. (12) and (15) do not de�ne a

unique solution, and we use this freedom to impose addi-
tional conditions on �p, to maintain the highest possible
transmission at nearby energies, i.e. to make the en-
velope of minima as at as possible around the design
energy Eb. In order to achieve this, we should keep the
conditions (10) approximately valid at selected energies
Ej close to Eb, for which we can write �p(Ej) = �=2��p,
where all �p(Ej) are small. In addition we will assume
that �p(Ej) = �p(Eb), as �p(E) changes very slowly with
energy in the middle of an allowed band. With these ap-
proximations, eq. (11) becomes

A(Ej) =
1Y

p=N

Ap(Ej) ; with

Ap(Ej) = sin �p I + cos �pAp(Eb); (17)

where I is the unit matrix, and �p is evaluated at Ej in
what follows. The result of expanding the elements of
A(Ej) in powers of the small parameters �p, is written as

iN a11(Ej) = cosh�a +
N�1X
k=1

ik xk ;

iN a21(Ej) = sinh�a +
N�1X
k=1

ik yk ; (18)

where we denote the sum of all terms of k-th order by
xk for the element a11(Ej) and by yk for the element
a21(Ej). Applying the conditions (10) at the point Ej,
leads to (N � 1) additional equations of the form

yk cosh�a � (�1)k xk sinh�a = 0 ; (19)

with k = 1 ::: (N � 1). For the N -cell ARC we have
2N independent parameters �N ::: �1, �N ::: �1, and 2N
equations, of which N +1 are assigned to make the enve-
lope of minima reach perfect transmission at the design
energy (eqs. (12 ) and (15)). The remaining (N � 1)
(eq. 19) we call stability conditions because we use them
to make the envelope of transmission minima as at as
possible around the design energy. In the next section
we develop this method for some speci�c cases.

IV. DOUBLE , TRIPLE, AND QUADRUPLE
CELL ANTIREFLECTION COATINGS

A. Double cell ARC

Suppose the potential vi(x) consists of two symmetri-
cal cells a2(x) and a1(x) with their corresponding transfer
matrices A2 and A1. In this case we have two parameters
�2 and �1 to optimize transmission through the allowed
band, in accordance with eqs. (12) and (15)

�=2 = �2(Eb) = �1(Eb) ;

�c=2 = �1 � �2: (20)

Using expressions (17) and (18) with N = 2, we obtain

x1 = �1 cosh �2 + �2 cosh�1 ;

y1 = �1 sinh�2 + �2 sinh�1: (21)

The resulting stability condition for this case eq. (19)
takes the form

�1 sinh(2�2 � �1) + �2 sinh�2 = 0 : (22)

We should emphasize that the shape of the cell po-
tentials ap(x) can be very complicated, but so long as
its parameters �p and �p take the required values, one
will have the desired performance. It is a separate mat-
ter, (see section IV), to choose the actual cell potential
shape. In the case of optical or microwave �lters, usually
one treats each layer as a cell. Then it is possible to ar-
range that �1 = �2 (more generally, all �k are equal) at
all wavelengths (energies) for normal incidence. This is
called making the layers of equal optical depth. Then, all
the �k are equal. In that circumstance, eq. 22 leads to the
solution �1 = 3�2, which is the well-known Butterworth
or maximally at �lter design. In contrast, for electrons
in semiconductors, one cannot assume that the �k are
equal, and the solution can be quite di�erent. This is the
principal di�erence between �lters for electrons, and the
classic designs, and it has not been considered in previ-
ous work, such as [6], which assumed the classic �lters to
be valid.
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B. Three cell ARC

In this case we have three Bragg cells and require

�c=2 = �1 � �2 + �3: (23)

The expansion terms in (18) take the form

x1 = �1 cosh(�3 � �2) + �2 cosh(�3 � �1) + �3 cosh(�2 � �1) ;

y1 = �1 sinh(�3 � �2) + �2 sinh(�3 � �1) + �3 sinh(�2 � �1) ;

x2 = �1�2 cosh�3 + �1�3 cosh�2 + �2�3 cosh �1

+
�21 + �22 + �23

2
cosh(�1 � �2 + �3) ;

y2 = �1�2 sinh�3 + �1�3 sinh�2 + �2�3 sinh�1

+
�21 + �22 + �23

2
sinh(�1 � �2 + �3) (24)

and the two stability conditions from (19) (N = 3) are

0 = �1 sinh(�1 � 2�2 + 2�3) + �2 sinh(2�3 � �2) + �3 sinh�3 ;

0 = �1�2 sinh(�1 � �2) + �2�3 sinh(�3 � �2) + �1�3 sinh(�1 � 2�2 + �3) : (25)

Under these stability conditions contributions to the reection which are linear or quadratic in �p will vanish at nearby
energies Ej.

C. Four cell ARC

Finally, we consider the case when the potential vi(x) consists of four symmetrical cells a4(x), a3(x), a2(x), and a1(x).
According to (12) and (15), the eight basic parameters at hand are related by

�=2 = �4(Eb) = �3(Eb) = �2(Eb) = �1(Eb) ;

�c=2 = �1 � �2 + �3 � �4: (26)

The expansion terms in (18) take the form

y1 = �1 sinh(�4 � �3 + �2) + �2 sinh(�4 � �3 + �1)

+ �3 sinh(�4 � �2 + �1) + �4 sinh(�3 � �2 + �1) ;

y2 = �1�2 sinh(�4 � �3) + �1�3 sinh(�4 � �2) + �1�4 sinh(�3 � �2)

+ �2�3 sinh(�4 � �1) + �2�4 sinh(�3 � �1) + �3�4 sinh(�2 � �1)

+
�21 + �22 + �23 + �24

2
sinh(�4 � �3 + �2 � �1) ;

y3 = �1�2�3 sinh�4 + �1�2�4 sinh�3 + �1�3�4 sinh�2 + �2�3�4 sinh�1

+ �1

�
�22 + �23 + �24

2

�
sinh(�4 � �3 + �2) + �2

�
�21 + �23 + �24

2

�
sinh(�4 � �3 + �1)

+ �3

�
�21 + �22 + �24

2

�
sinh(�4 � �2 + �1) + �4

�
�21 + �22 + �23

2

�
sinh(�3 � �2 + �1)

+
�31
6
sinh(�4 � �3 + �2) +

�32
6
sinh(�4 � �3 + �1)

+
�33
6
sinh(�4 � �2 + �1) +

�34
6
sinh(�3 � �2 + �1) : (27)

The parameters x1, x2, and x3 are expressed similarly with replacement of sinh! cosh throughout.
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The three stability conditions (19) (N = 4) take the form

0 = �1 sinh(2�4 � 2�3 + 2�2 � �1) + �2 sinh(2�4 � 2�3 + �2)

+ �3 sinh(2�4 � �3) + �4 sinh�4 ;

0 = �1�2 sinh(�1 � �2) + �1�3 sinh(�1 � 2�2 + �3) + �1�4 sinh(�1 � 2�2 + 2�3 � �4)

+ �2�3 sinh(�3 � �2) + �2�4 sinh(��2 + 2�3 � �4) + �3�4 sinh(�3 � �4) ;

0 = �1�2�3 sinh(2�4 � �3 + �2 � �1) + �1�2�4 sinh(�4 + �2 � �1)

+ �1�3�4 sinh(�4 � �3 + 2�2 � �1) + �2�3�4 sinh(�4 � �3 + �2)

+ �1

�
�22 + �23 + �24

2

�
sinh(2�4 � 2�3 + 2�2 � �1) + �2

�
�21 + �23 + �24

2

�
sinh(2�4 � 2�3 + �2)

+ �3

�
�21 + �22 + �24

2

�
sinh(2�4 � �3) + �4

�
�21 + �22 + �23

2

�
sinh�4

+
�31
6
sinh(2�4 � 2�3 + 2�2 � �1) +

�32
6
sinh(2�4 � 2�3 + �2)

+
�33
6
sinh(2�4 � �3) +

�34
6
sinh�4 : (28)

Under these stability conditions linear, quadratic and
cubic terms in the reection amplitude will vanish at
nearby energies Ej.
The last piece of information we require, to solve the

above systems of equations, is the relative values of the
set of �p for p 2 1:::N . Because the stability conditions
are homogeneous, it is only the ratios of the �p that mat-
ter. For electrons in semiconductors the curves for the
cos�p are almost linear near the Bragg point Eb; see Fig.
2. This allows us to approximate

cos�p(Ej) ' cos �p(Eb) + (cos(�p(E))
0
E=Eb (Ej �Eb):

(29)

As �p(Ej) = �p(Eb)� �p, where all �p are small, eq. (29)
takes the form

�p ' (cos(�p(E))
0
E=Eb (Eb � Ej): (30)

Therefore, the ratios of the �p are approximately equal to
the ratios of the slopes of the cos�p curves at the Bragg
point Eb. These in turn depend on the properties of the
chosen ARC cells. Fig. 2 shows that this approximation
works well over most of the allowed band of the central
periodic structure vcK (x). The example shown is for a
three-cell �lter, and the slopes are in ratio 0:38 : 0:67 :
0:93 : 1:0, the last �gure being the central cells.
As a very rough working rule, we �nd that the ratio of

slopes at the Bragg point is approximately the ratio of the
barrier strengths, i.e. to Sp =

p
Vp bp in case of a square

barrier cell. Note that according to the above argument,
the stability conditions apply not at some speci�c energy
Ej, but over a range of energies where the cos �p curves
maintain constant ratios. Fig. 2 shows that this is a large
part of the allowed band.

V. NUMERICAL EXAMPLES

We �rst consider an energy band pass �lter consisting
of a row of delta-functions of strength V0 and spacing d
as the periodic medium. This is relevant to devices such
as that of Gomez et al. [4], where the barriers are strong
but thin. The transfer matrix C can be written in the
form [5]

C =

�
(1 + i
c=k) e

�ikd i
c=k
�i
c=k (1� i
c=k) eikd

�
; (31)

where k2 = 2m�E=�h2, 
c = m�V0=�h
2, and m� is the

e�ective mass of an electron. Then the Bloch phase �c
and the parameter �c are given by (see eq. (4)),

cos �c = cos kd+

c

k
sin kd ;

tanh�c =

c

k sin kd� 
c cos kd
: (32)

The parameters 
c and d are determined by the desired
band edges: cos �c(kl) = 1, and cos �c(kh) = �1. These
lead to

d = �=kh ; 
c = kl tan(kld=2) : (33)

We construct the antireection coating from delta-
potential cells as well. Such a cell is described by just
two parameters, so �p and �p for the cell �x its parame-
ters uniquely.
If there is only one cell in the coating (N = 1), eq.

(16) easily determines parameters �1 and �1(Eb) of this
cell. Then, we can �nd the cell width d1 and the strength

1, using the expressions (32) at the point E = Eb, in
which one should replace 
c by 
1, d by d1, �c by �1,
and �c by �1. If there are two, three, or four cells in
the ARC coating, in order to �nd the best solution, we
should impose the stability conditions (22), (25), or (28),
taking into account (30).
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As a speci�c example, we place the �rst allowed band
at 122 meV < E < 172 meV. The resulting parameters
are 
c = 1:88 nm�1 and d = 5:55 nm; the strength V0 =
�h2
c=m

� is 590 meV nm for constant m� = 0:071me.
Our solutions for di�erent numbers of ARC cells in

the coating are shown in Table I, while the correspond-
ing transmission curves are shown in Fig. 3. In each
example, the ARC produces a signi�cant improvement
compared to the initial periodic structure. The average
transmissivities are � = 0:21 for the initial superlattice,
� = 0:80 with a single-cell ARC; � = 0:91 for the dou-
ble cell coating, � = 0:95 for the triple cell coating, and
� = 0:96 for the quadruple. Note that the envelope of
minima of the augmented lattice gets rapidly wider as N
increases; this is what pushes up the jTK j

2 curve towards
unity. If the number of central cells K were increased,
the transmission curve would show additional oscillations
above the same envelope of minima.
As a second example of our theory, we consider a band-

pass �lter based on a square barrier superlattice. Gomez
et al. [4] proposed a 15 cell �lter based on a gaussian
distribution of barrier heights. This is illustrated in the
top row of Fig. 4. Such a model had been studied earlier
by Tung and Lee [7,8], who argued that a smoothly ris-
ing pro�le should reduce reection. One could question
how this applies to a sequence of square barriers of height
Vb > E > Vw. Subsequently, Yang and Li [9] carried out
similar calculations, choosing a variety of di�erent distri-
butions. In neither case was a sound theory advanced to
explain why such an array should have favourable trans-
mission properties. We will limit our discussion and com-
parisons to the Gomez example.
In the notation of Fig. 1, the barriers are of height V ,

width b, and separated by w. To make symmetric cells,
we include a half-well on each side of each barrier. The
transfer matrix C has elements [2]

c11 = (cos �b � iZ(+) sin �b)e�ikw = c�22

c21 = �iZ(�) sin �b = c�12 (34)

where Z(�) = (k2��2)=(2k�), and k2 = 2m�E=�h2, �2 =
2m�(E � V )=�h2. The dispersion equation for the Bloch
phase �c and the parameter �c are given by

cos�c = cos �b cos kw � Z(+) sin �b sinkw ;

tanh�c =
Z(�) sin �b

cos �b sin kw + Z(+) sin �b cos kw
: (35)

In the gaussian array of ref. [4], the core potential vcK (x)
is a single square barrier cell, K = 1, of height V = 350
meV, corresponding to an Al0:45Ga0:55As/GaAs super-
lattice. They took the e�ective mass to be 0.067 in both
well and barrier, neglecting material and energy depen-
dence. We will adopt their parameters to facilitate com-
parison. To construct our �lter we use a periodic struc-
ture with K = 3 such central cells. Using the �rst of the
eqs. (35) we obtain the �rst allowed band from 47:7 meV

< E < 98:5 meV. At the Bragg point Eb = 66:8 meV the
second of the eqs. (35) determines �c = 1:26.
To construct the ARC we also use square barrier cells.

To provide the required values of cos�p and �p for each
cell, we have three parameters Vp (the barrier height),
bp (the barrier width), and wp (the well width) at hand.
One possible set of resulting parameters is shown in Ta-
ble II and the corresponding transmission curves in Fig.
5. We show results for (a) N = 1 and (b) N = 4 cells,
and it is seen that they are similar to the earlier exam-
ple. The average transmissivities are � = 0:41 for the
initial superlattice, � = 0:81 with a single cell coating,
� = 0:90 with a double cell coating, � = 0:93 with a
triple cell coating, and � = 0:95 with a quadruple cell
coating. In general, the results parallel those of the delta
model. The transmission through the �rst allowed band
of the augmented system is much higher than for the pe-
riodic structure alone. The envelope of minima for the
augmented system is also shown; if more than K = 3
central cells were included, the transmission curve would
oscillate above that line.
The gaussian �lter of ref. [4] can be considered as a sin-

gle central cell and N = 7 ARC cells with the same width
of the barriers and wells as the central cell, but with the
barrier heights decreasing in accordance with a gaussian
law. (This would be achieved by reducing the Al content
x < 0:45.) The average transmissivity of their �lter is
�G = 0:84. A major di�erence from our design, is that
their cells do not have a common Bragg energy: rather
it is the upper band edge which is common. This occurs
because the narrow barriers of width b = 1:5 nm are e�ec-
tively delta functions, and eq. 33 applies. All cells have
the same width d = b + w, and therefore the same up-
per band edge. This property degrades the performance
signi�cantly for E > 70 meV. After the mid point of the
band, their curve shows oscillations of increasing ampli-
tude, with a deep minimumof jtj2 � 0:42 at 90 meV, and
a narrow peak at 93 meV, close to the upper band edge.
A similar disease is seen in the drawings of Tung and Lee
[7,8]. Even our single cell ARC with �1 = 0:81 gives com-
parable performance. Fig. 6 compares the transmission
curve for the gaussian �lter with ours; in (a) we show
the N = 1 and 4 cell systems and in (b) the N = 2 and
N = 3 ARC cells. It is seen that the dips near the band
edge become progressively shallower and further apart as
the number of ARC cells N increases leaving a wider at
band in the middle. Despite having many fewer cells, as
sketched in Fig. 4, our ARC designs show improvement
in transmissivity and shape of the transmission curves.
From a practical point of view they should be easier to
fabricate reliably.
Comparing parts (a) of Figs. 3 and 5 one sees two

e�ects of increasing K from three to �ve: the additional
oscillations mentioned above, and the sharper de�nition
of the band edges. Since the total length of the device
is a consideration, (� 2N + K), there is a trade-o� to
be made between increasing N for higher transmissivity,
and increasing K for sharper cut-o� at the band edges.
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VI. CONCLUSION

We have shown how to design an e�cient band-pass
�lter for electrons in semiconductors. Transmission
through a superlattice with even a few periods is almost
zero in the forbidden bands and is characterized by a
sequence of narrow resonances oscillating between an en-
velope of minima and 100% in the allowed bands. The
role of an e�cient antireection coating is to push up this
envelope of minima as close to 100% as possible, over as
much of the allowed band as possible.
Our solution is facilitated by the use of Kard's param-

eterization of the transfer matrix in terms of trigonomet-
ric and hyperbolic functions. Using this representation,
we have derived stability conditions which optimize an
N -cell antireection coating for an arbitrary initial su-
perlattice. Numerical examples, using up to four cells
in the ARC, show the possibility of increasing the over-
all transmissivity through the allowed band of a typical
semiconductor superlattice up to 95%, while keeping the
total width of the device to a minimum.

APPENDIX A: ADEQUACY OF
QUARTER-WAVE COATING FOR ARC

Although it is well-known that quarter-wave ARCs
work, it may be of interest to give a simple demonstration
that they apply to our system. We can divide a multi-
layered ARC coating vi(x), with constant potentials in
each layer, into a �nite number N of symmetrical cells
with potentials aN (x), .aN�1(x), ..., a1(x). We argue it-
eratively, so let us denote the potential of all cells except
the last by y(x). According to the above separation, the
potential y(x) consists of N � 1 symmetrical cells, but is
not necessarily symmetric itself. Then, the transfer ma-
trix for the ARC coating can be factorized as A = Y B,
where Y and B are the transfer matrices for potentials
y(x) and a1(x) respectively. In terms of matrix elements
this relation takes the form�

a11 a12
a21 a22

�
=

�
y11b11 + y12b21 y11b12 + y12b22
y21b11 + y22b21 y21b12 + y22b22

�
:

(A1)

The �rst condition of eq. (10) can now be written as

(y22y11 + y21y12)(b21b11 � b12b22)

+ y21y11(b
2
11 � b212) + y12y22(b

2
21 � b222) = 0: (A2)

Taking into account that the parameterization (10) is
valid for B, the previous equation can be expressed as

(y21y11 � y12y22) cos 2�1 � i ((y22y11 + y21y12) sinh�1

+(y21y11 + y12y22) cosh �1) sin 2�1 = 0: (A3)

An obvious solution is given by

y21y11 � y12y22 = 0 and

cos �1 = 0 : (A4)

The �rst condition in (A4) is identical to the �rst condi-
tion in (10), but for the potential y(x). Continuing in this
way by induction, we will come to the point where the
analogous condition is required for the last cell aN (x),
which is equivalent to the condition cos�N = 0, as the
cell aN (x) is symmetric itself. Therefore, one possible
way to satisfy the �rst requirement in (10) is to take all
cos�p = 0 at the design energy.
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TABLE I. Parameters for ARC cells using delta-function
potentials

case, N cell, p �p 
p, nm
�1 dp, nm

1 1 1:00 0:61 4:71
2 1 1:71 1:39 5:38

2 0:71 0:40 4:30
3 1 1:91 1:72 5:50

2 1:45 1:05 5:18
3 0:54 0:30 4:03

4 1 1:97 1:83 5:53
2 1:79 1:58 5:43
3 1:26 0:84 5:00
4 0:44 0:23 3:85
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TABLE II. Parameters for ARC cells using square poten-
tials

Case N cell p �p Vp, meV bp, nm wp, nm
1 1 0:63 344.6 0.73 5.60
2 1 1:04 279.0 1.50 5.80

2 0:41 245.2 0.65 5.10
3 1 1:18 333.9 1.46 6.10

2 0:83 294.6 1.13 5.70
3 0:28 182.4 0.60 4.80

4 1 1:23 339.7 1.50 6.15
2 1:07 326.1 1.34 6.00
3 0:67 317.8 0.85 5.60
4 0:20 137.1 0.58 4.60
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FIG. 1. Schematic drawing of a one-dimensional periodic
array of quantum wells/barriers with cell width d = w+b and
height V ; upper �gure - no ARC coating; lower �gure - with
an ARC coating on each side of the array.
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(dotted lines) for the N= 3 ARC with square barrier cells.
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a) N = 1 ARC
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FIG. 3. Comparison between transmission probability vs.
energy in the �rst allowed band of a superlattice with K = 5
deltas of strength 
c = 1:88 nm�1 and period d = 5:55 nm
without ARC, and with an N -cell ARC. The parameters of
all ARC cells are given in Table 1. The envelope of minima
is shown in all cases.
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FIG. 4. Sketch of the gaussian array of ref. 4, and our four
ARC solutions.
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FIG. 5. Comparison between transmission probability vs.
energy in the �rst allowed band of a superlattice with K = 3
square barriers of height V = 350 meV, barrier width
b = 1:50, and well width w = 6:20 nm without ARC, and
with an ARC. The corresponding envelopes of minima are
shown for each curve. For parameters see Table 2.
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FIG. 6. Gomez et al.'s transmission compared to (a)
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