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index contrast on a period of the structure.
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I. INTRODUCTION

Photonic crystals, which are repetitive dielectric struc-
tures, have attracted considerable attention during the
last fifteen years, as they hold promise of novel applica-
tions in photonic devices. The ideal three-dimensional
(3D) photonic crystal would exhibit absolute photonic
band gaps (forbidden bands) in which the propagation of
light is prohibited in any direction. That is, it would be-
have as an omnidirectional mirror in a specified frequency
range. However, to achieve a complete 3D photonic band
gap one has to build a perfect 3D dielectric lattice from
materials with a refractive index contrast of two or more,
which is still a challenging technological problem [1].

Fortunately, it has recently been shown [2-5] that a
1D periodic structure with high refractive index con-
trast can serve as such a photonic crystal. This has
sparked another surge of interest in wave propaga-
tion through one-dimensional layered periodic structures.
The common theoretical methods include the Floquet-
Bloch approach, coupled-wave theory, and transfer ma-
trix method. Among these three, the coupled-wave ap-
proach offers superior physical insight and moreover gives
simple analytical results in limiting cases.

The assumptions of conventional coupled-wave theory
[6-8] (which is equally applicable to both 2D - slanted
gratings, and 1D - periodic structures), include neglect
of second derivatives of the field amplitudes and retention
of just one diffracted wave (in addition to the transmit-
ted wave). As a result, the final system of coupled-wave
equations contains only two first-order differential equa-
tions which can be solved analytically. Unfortunately,
these approximations often lead to obviously incorrect
results. Such occurs in the case of high refractive index
contrast, which is required for a 1D photonic crystal.

Rigorous coupled-wave theory [9, 10] allows for the
presence of all possible diffracted waves in case of 2D
or 3D periodic structures, and takes into account the

second derivatives of the field amplitudes as well. The
resulting system of coupled-wave equations is exact but
involves an infinite number of second-order differential
equations. In practice, the infinite set must be truncated
by discarding the higher-order diffracted waves. The or-
der of the approximate set of equations depends on the
required precision of the final result. Therefore, rigorous
coupled-wave theory is particularly suitable for numer-
ical calculations. In that sense it is analogous to the
Floquet-Bloch approach while it has the advantage of a
clear physical interpretation. One can say that rigorous
coupled wave theory or the Floquet-Bloch approach are
better suited for specific calculations than for deriving
general properties of wave propagation in periodic struc-
tures. Moreover, the rigorous coupled-wave theory is not
directly applicable to 1D periodic structures (pure reflec-
tion gratings), as the transition of the slant angle from
near zero to exactly zero involves a singularity [9].

The transfer matrix method for one-dimensional pe-
riodic structures [11, 12] is exact and particularly suit-
able for structures with homogeneous constituent layers.
However, the analytical expressions for the widths of for-
bidden and allowed bands in terms of characteristic phys-
ical parameters, such as refractive indices and thicknesses
of the constituent layers, are difficult to analyze even for
a bi-layer period.

In light of the above, a new theory which should be
analytically as simple as the conventional coupled-wave
theory, but providing more accurate results in case of
high refractive index contrast (deep gratings), is desirable
for the description of wave propagation in 1-D photonic
crystals. A suitable candidate is a semiclassical version
of the Kogelnik coupled-wave theory. This semiclassical
coupled-wave theory was initially introduced in [13] for
normal incidence in 1-D structures and was thoroughly
reviewed in [14] for the same case. Other recent efforts to
improve the conventional coupled wave theory in case of
high refractive index contrast include [15-18]. However,



in our opinion, the semiclassical version of the coupled
wave theory is a better choice for 1-D structures as it
provides accurate and relatively simple analytical results
for the band widths and reflection/transmission charac-
teristics.

The purpose of this paper is twofold. First, we ex-
tend the semiclassical coupled wave theory to the case
of oblique propagation of T'E electromagnetic waves in
1-D periodic structures and show the relation between
the solutions, obtained within the approximations of this
theory, and Bloch waves. Second, we work out the second
approximation of the semiclassical coupled wave theory,
which turns out to be essentially exact for any achievable
ratio of the refractive indices of the layers comprising the
1-D photonic crystal.

In the following section, this coupled-wave method is
developed in terms of two counterpropagating waves, in-
cluding not only variable amplitudes as in conventional
theory, but also variable (geometric-optics) phases. Then
we find the relation between the solutions in terms of
coupled waves, and in terms of Floquet-Bloch functions.
This allows us to construct a simple analytical expression
for the Bloch phase, which is a key parameter for deter-
mination of band structure. These results are illustrated
in Sec. III to obtain the widths of forbidden bands and
reflection/transmission characteristics of a periodic bilay-
ered dielectric structure for arbitrary angle of incidence
and arbitrary ratio of the refractive indices. Another ex-
ample in that section shows how to apply our theory to
a periodic structure with a continuous profile of the re-
fractive index. The conclusions are summarized in Sec.
Iv.

II. SEMICLASSICAL COUPLED WAVE
THEORY

A. Derivation of basic equations

We consider a transparent (no absorption) slab whose
normal is the z-axis, occupying the region 0 < z < L.
The index of refraction n(z) = n(z+d) varies periodically
in the z-direction, but does not depend on x or y. The
dielectric permittivity €(z) is the square of the refractive
index: €(z) = n%(z). Monochromatic plane waves with
angular frequency w and vacuum wave number k = w/c
propagate inside the medium parallel to the 2z plane. For
TFE polarized waves, i.e. for waves with E perpendicular
to the plane of wave propagation,

E
H

E(z)éyexp [i(kfz — wt)],
[Hy(z)é + H.(z)é,] exp [i(kBz — wt)], (1)

Maxwell’s equations inside the periodic medium reduce
to the wave equation
d*E(z)
dz?

+k[n*(2) - B°]E(2) =0, (2)

where § k is the (constant) z-component of the wave vec-
tor of modulus k(z) = wn(z)/c inside the medium. If
a TFE polarized wave impinges on the periodic medium
from the region z < 0, then

ﬂ =Ny sin 00 , (3)

where ng is the refractive index of the region z < 0 and
B is the angle of incidence measured from the normal.

Equation (2) with an arbitrary periodic function n(z)
is the Hill equation. According to Floquet-Lyapunov the-
ory, its general solution can be written as a superposition
of two Bloch waves

E(z) = Fpi(z)exp(izez) + Gpa(z) exp(—izz),
p12(2) =p1,2(2 +d). (4)

The quantity @ is a so-called characteristic index that
is generally complex (& = &' + i&") and related to the
Bloch phase by ¢ = &d. One can see that the peculiari-
ties of wave propagation through a periodic structure de-
pend mainly on the dispersion relation & = a&(k), which
is conveniently written in the form of the dispersion equa-
tion cos ¢(k) as a function of k. There are two physically
different regions of parameters for our structure. In the
first, called allowed bands, ¢ is real (| cos ¢| < 1) and the
forward Bloch wave p;(z) propagates without attenua-
tion. In the second, ¢ is complex (| cos | > 1), and the
forward Bloch wave is exponentially damped, even in the
absence of real absorption. Such regions are called forbid-
den bands and their centers are Bragg resonances. Physi-
cally, in the forbidden bands, especially around the Bragg
resonances, the accumulated Fresnel reflection from vari-
ations of the refractive index n(z) over the period results
in an increase of the amplitudes of the backward Bloch
wave at the expense of the forward wave, leading to an
increase of the reflection probability.

The essence of the semiclassical coupled wave theory
is as follows. Instead of Bloch waves, we seek a solution
of the Hill equation (2) in terms of two counterpropagat-
ing waves with slowly varying amplitudes A*)(z) and
geometric-optics phases +¢(z), i.e.

A) )
(n2(z) _(;3)1/—4 exp [ith(2)]

() (4
+ (712(1;1) _(ﬁg)1/4 €xXp [_l¢(z)] ) (5)

E(z) =

where

() = k / ) = B ©)

and one can see that ¥(z + d) = ¥(2) + ¢(d).
magnetic field we seek a solution in the form

For the

Hy(2) = —(n?(z) = )"/ A (2) exp [igp ()]
+ (n*(2) = B A () exp [ ()],
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After the substitution of expressions (5) and (7),
Maxwell’s equations become an identity if the amplitudes
A& (2) satisfy the system

Hz(z) =

U 50,
U - 5(2)a0 (), ®
where
sy = 2B ) o aigy). ()

dn(z)

The P implies a principal value integral, and the sum
over j = 1,2, ... takes into account the contribution to

s of j jumps in the refractive index n(z) at the points of
dlscontmmty z; within the period. If a discontinuity in
n(z) occurs at the beginning or at the end of a period, we
should take this discontinuity into account only once, say
at the beginning of the period. The quantities n(z; £ 0)
are the limiting values of the refractive index n(z) to
the right/left of a point of discontinuity z;. Physically,

the coefficients sﬁ ) represent the magnitude of coupling

between the two counterpropagating waves (5) due to the
m-th Fourier components of the functions S* ().

We can now average over rapid oscillations to obtain
from the exact system (8) an approximate and simpler set
of equations. In practice, the main contribution to the ex-
act solutions of (8) is provided by the slowly-varying com-
ponents of the coefficients S*(z). It is reasonable to start
the analysis from the centers of the forbidden bands (the
Bragg resonances) kq, ¢ = 1,2, 3... of our periodic struc-
ture. To a very good approximation these resonances can

dB™) (2)
dz

dB()(2)
dz

- —i(qu(*)(z) + |sp+ Z S:nefi%"(qu)z B(+)(z).

The system (8) is exact. Introducing the phase averaged
refractive index ngy,8 = ¥(d)/kd, i.e.

1 @
Nav,3 = E/o Vn2(z") — B2dy

(10)

we find that the quantities S™)(z) exp(F2iknqy 52) are
periodic functions that can be Fourier expanded as

m=-o0

+2ikng, 2 Z s(:l:)eszz_

m=—0o0

SH(2) =e (11)

The coefficients ssni ) can be expressed in a form which is

particularly suitable for layered periodic structures with
piecewise continuous n(z)

exp [22' (:I:zb(z) F kngy gz — %mz)] dz

n
1 2(z; +0) — B2 .
+ 4_ ;ln [%] €xp [21 (ilp(zj) + knav,ﬁzj - gmz])] .

(12)

be determined from the formula kqn4.,8d = 7q. Now, in-
troducing the detuning J, from the g-th Bragg resonance

i i
_E <5q7£1 < ﬁ

™
knav,ﬁ_ Eq+5qa { _g <(51 < % (13)
we can rewrite equation (11) in the form
5(+)(z) = (+)+ Z S(+) 12X (m+4q)z 21007,
i m#—q
S(_)(z) = ( ) 4+ Z (=) gi?F (m—q)z e~ 2% (14)
m#q

+)

T, 18 just the com-

We see from equation (12) that st
plex conjugate of s( ). Therefore, introducing the no-

tation s'y) = s,, and a new set of functions B (z) =
A™) () exp(+id, ), we obtain from the system (8) a new
one in the form

l(SqB(—H (Z) + Sq + Z SmeiZT"(m—q)z B(_) (Z),

m#q

m#q



This system is still exact. If all s,,d < 1 and §,d < 1, we
can use the method of averaging [19] to obtain an approx-
imate solution. Further, we will find that this method
gives reasonable results even in cases where s,,d > 1 and
0qd > 1.

Following ref. [19], we represent B(¥)(z) as a super-
position of slowly-varying terms B (z) plus a sum of
small oscillatory terms

BM(2) = B (2) +u1(2)B)(2)
v2(2) B (2) + ...,
B)(z) = BO) 40} (2)BH(2)

+ v (2)BO(2) + ..., (16)

+

where the unknown function v (z) is a linear function of
small quantities (spd, J;d) in the system (15), va(2) is
bilinear and so on. For the slowly-varying terms B(+)(z)
we have a system

B(+) _ _

ddiz(z) = i6,BM) (2) + e1B)(2)
+ BM(2) + ...,

B(-) _ _

ddiz(z) = —i6,B)(2) + ;B (2)

+ B (2) + ..., (17)

where the unknown coefficient ¢; is a linear function of
small quantities s;,d and d,d, the unknown coefficient
¢z is a bilinear function, and so on. Substituting the
solution (16) into eq. (15) and taking into account (17),
we obtain (for the details see the appendix)

_ _id |$m|?
€1 = 8q, Cz—mea (18)
m#q
and
id Smetd (m=a)2
=—— —_— . 1
vi(2) QWZm—q—(Sqd/w (19)
m#q |
() =
B7(2) =
with

72 (k) = /Isq(K)|* =77 , (25)

where 1y = §; — icp is a real number.

In the first approximation of small s,,d and §,d, the
functions B(*)(z) are replaced by slowly-varying terms
B#)(2), which can be found from the system obtained
by averaging equations (15) over one period:

B(+) _ _
ddiz(z) = i0,BM)(2) + 5,B(2),

B(-) _ _
waz(z’) = —i6, BT (2) +5;BM(2). (20

Therefore, the functions B(+)(z) in the first approxima-
tion have the form

BM(z) = (n —id) Fe " + 5, G ™,

B{7(2) = (=) Fe ™ +G(m — id,) Ge™?, (21)
where F' and G are constants that depend on the bound-
ary conditions, and

(k) = /ls4(R)* = 67 - (22)

The second approximation to the functions B(F)(z)
takes into account not only the slowly varying terms
B®)(2) but also the first oscillatory terms vy (2)BF) (2)
(see (16)); and the slowly varying terms B(+)(z) them-
selves should be calculated in the second approximation,
i.e. from the system

B+) _ _
. dz e = iéqBH)(z) +3qB(7)(z)
+ B (2),
dB(i)(Z) . S(— * T z
0 = —i6,B)(2) +qu(+)( )(2)

+ B (2), (23)

rather than from Eq. (20). Therefore, the final expres-
sions for the functions B(*)(z) in the second appoxima-
tion take the form

[(v2 = img) — squ1(2)] Fe™"% + [sq + (y2 — ing) v1(2)] G €7,
[=sg + (72 —ing) 0] (2)] F e +[(72 — ing) + 5407 (2)] G™* (24)

We can now write the final expressions for the electric
field in terms of two counterpropagating waves (5) inside
the periodic structure in the first and second approxima-
tions as



F(y1 —idy)e "% + Gs eM*

F(=s3)e™ % + G(y1 —id4)e™?

(1) — i(y(z)—0dq2) —i((z)—dq2)
EY(2) = (n2(z) — p2)1/% € + (n2(z) — B2)1/4 € (26)
and
E®(z) = F (72 = ing) — syvi(2)] €772 + G [sq + (v2 — ing) v1(2)] €727 pi(6(2)=6,2)
O
L Flosy+ G = inof ()] € +G ba = img + sg0i @)™ iy o
(n2(2) — o |
or in terms of two Bloch waves (4) as
EM —F (n— i(sq)ei(¢(z)—5qz) — SZe_iw"(Z)_éqz) G Sqei(¢(z)—6qz) + (11— i(’)‘q)e—i(d)(z)—éqz) - 5
(2) = 2(,) _ 32\1/4 € + 2(,) _ 32\1/4 € (28)
(n?(2) — B?) (n?(2) — B?)
and
ED(z) = F (2 — i — 5701 (2))e" VD702 — (57 — (3 — iy )v] (2))e (V=) ~0a2) R
W)~
e, (5g + (72 — ing)v1 (z))el(w(z)_éqz) + (72 — ing + 5407 (z))e—z(1/)(z)—(5qz) eV2% (29)

(n

From the expressions (28) and (29), we easily obtain that
in each zone along the k-axis m(—1 + ¢)/(na,d) < k <
(3 + q)/(navd) (see Eq. (13)), the characteristic index
& and the Bloch phase ¢ in the first and second approx-
imations take the forms

™ . .
=q+i,2, ¢71’2 =Tqg+1i171,2 d. (30)

X1,2 = d
In forbidden bands, where |s;| > |4] (first approxima-
tion), or |sq| > |ng| (second approximation), yi,2 is a
real positive number. In allowed bands, where |s4| < |d,]
(first approximation), or |sq| < |n4| (second approxima-
tion), y1,2 is a pure imaginary number: v, = i|y], if
0g < 0 and y1 = —i|y|, if g > 0; y2 = i|y2], if pg < O
and 2 = —i|yal, if 9y > 0.

In the first approximation, according to (22) and (13),
the right kg and left k7 boundaries of the forbidden band
with the center k; = 7 q/(nqv,3d) can be found from the
equations

krngvs —7mq/d
7rq/d — kL Nav,p

|Sq(kR)|7
|sq(kL)|-

Adding these two equations, we obtain the width of the
forbidden band to be

wy = |sq(kr)| + |sq(kL)| ~ 9 |54 (kq)l ) (32)
Nav,B Nav,s

(31)

where s4(k,) is the coupling constant at the center of the
forbidden band. We will see from the figures that this is
a very accurate approximation.

°(2) - )

[
B. Reflection and transmission

First, we calculate the reflection and transmission co-
efficients for a wave incident on a matched periodic struc-
ture. By matched, we mean that the refractive index is
continuous across the exterior boundaries at z = 0 and
z = L, i.e. there is no Fresnel reflection from them. As
a result, reflection by the entire system 0 < z < L is
determined only by Bragg reflection from the periodic
structure itself.

Eq. (5) represents a solution of the Hill equation (1) in
terms of right and left-moving components. Therefore,
the amplitude Bragg reflection and transmission coeffi-
cients for a wave incident on the structure from the left,
i.e. from the region z < 0, can be found from the expres-
sions

(=)
" = gm0
(+)
v Wé;%(ﬁiwxp o)), 3

under the conditions
A(+)(0)
(n2(0) — p2)/*
AL
m exp(=ip(L)) = 0.  (34)

The first relation in Eq. 34 is just a normalization condi-
tion, while the second expresses the radiation principle:
no propagation of a left-moving wave in the region z > L.

xp (i (0)) = 1,



From these conditions we can find the constants F' and G
to be substituted into expressions (33) for reflection and

transmission amplitudes. The final results in the first
and second approximations take the forms

7-(1) . —82 smh(’ylL)
B ™ 41 cosh(yiL) —i6, sinh(y, L)’
it Nq
(1 _ ne' :
=
B y1 cosh(y1 L) — idg sinh(y L)’ (35)
2) (—sp — 2inqu* + squ*?) sinh(y2L)
r = - - )
57 W= u) 9 cosh(1aL) = i [(1+ [}y = 2Tm(s,1) inh(12 )
1— itNq
£ (I—Juf)re (36)

B (1= [u?)y2 cosh(y2L) — i [(1 + [ul*)ng — 2Im(squ*)] sinh(y2 L)’

where u = v1(0).

As we have already mentioned, 72 is real and posi-
tive in forbidden bands and becomes a pure imaginary
number in allowed bands. Therefore, for reflection and
transmission in allowed bands it is more natural to use

the expressions in terms of the characteristic index 1,
which is a real number in these bands. These expres-
sions follow immediately from (35) and (36), if we take
into account (30):

—s; sin(ee1 L)

1 _
"B = (201 — mq/d) cos(a1 L) — id, sin(ae1 L) ’
t(l) — (%1 - ﬂ—q/d)e”qu . (37)
B (281 — mq/d) cos(ae1 L) — idysin(ae L)’
* : * *2 :
@) (—sp — 2ingu* + squ*?) sin(aey L)
Ty = ,
b (1= [ul?) (22 — mq/d) cos(az L) —i[(1 + |ul*)ng — 2Im(squ*)] sin(ze2L)
@ _ (1 — Juf?) (e — mq/d) e
th (38)

For an arbitrary (non-matched) periodic structure, the
field E(z) of a TE polarized wave (1) in the region outside
of the periodic structure takes the form

B(z) = e*Vme=F% L pgemiby/ne=5% 5 <,

E(z) = tgettVm-G-L 51, (39)
where ng is the refractive index of the region z > L.
Then, the amplitude reflection ry and transmission ty

coefficients of an arbitrary (non-matched) periodic struc-
ture can be found from the matrix equation

(8) = (i vhe) (e, )
< (o ) (%) @0

(1= |ul?) (2 — mq/d) cos(aeaL) — i [(1 + |u|?)n, — 2Im(s,u*)]sin(ze2L)

where the Fresnel coefficients

Vg — 8% — /(n(0))*> — B2

Yy 2B/ o1 ) )

by = 2y/n —p?
NN O ek

R %) iy Y

VoD P+ =7
D - P
b= -y Y

are responsible for the reflection and transmission on the
boundaries of the structure. In these formulae n(0) and
n(L) are refractive indices of our periodic structure at
the points z =0 and z = L.




The expressions (35) and (37) for the reflection and
transmission coefficients in the first approximation of the
semiclassical coupled wave theory have the same form as
those in the conventional coupled wave theory [7, 8, 14],
if we take into account the fact that the coupling coeffi-

cient s£,7 ) = sm of the semiclassical theory plays the same
role as the coupling coefficient ¢ s59™ of the conventional
theory and s(_tzb = s} plays the same role as —is%7.
However, the semiclassical theory even in the first ap-
proximation differs from the conventional one, firstly, by

the positions of the Bragg resonances: kgng,gd = mgq

(semiclassical) and kgv/€q0 — 52d = 7q (conventional).
This leads to a more accurate determination of the cen-

ters of the forbidden bands k, and, as a result, to a more
accurate estimation of the detuning dg.
Second, the magnitudes of the coupling coefficients

gcin)] in the semiclassical theory are determined by ex-
pression (12) rather than by s%% = keim/(2v/€qv — 5?)
as in the conventional theory. (Here g,, is the aver-
age value of the dielectric permittivity e(z) OVER the
period of the structure and &, (m = 1,2,...) is the
m-th Fourier harmonic of this function.) As a result,
the coupling coefficients s(i,,)L of the semiclassical theory
take into account multiwave diffraction by periodic inho-
mogeneities of €(z) because this periodically modulated
function makes its appearance under the integral sign
in the expression (12), (z) = n?(z). This is the key
point of departure of our semiclassical theory from the
conventional (Kogelnik) one, where only one diffracted

wave: exp(—iky/eqy — %2) (in addition to the trans-
mitted wave: exp(iky/eq0 — $22)) was assumed to exist
within the periodic structure.

Finally, the initial approximations of the conventional
coupled wave theory include neglecting boundary diffrac-
tion, i.e. it is assumed that g9 & €4, & €4, where gy = n%
and ¢, = n2. To calculate the reflection and transmission
in other cases we need to use Eq. (40) with /g4, instead
of n(L) and n(0) in (41).

As we shall see in the next section, all these drawbacks
of the conventional coupled wave theory lead to obviously
incorrect results in cases where the first approximation of
our semiclassical theory already gives reasonable results.
The second approximation of the semiclassical theory will
give us a good agreement (within 10%) with exact numer-
ical results even in the most unfavourable situations.

S

III. SOME APPLICATIONS OF MODIFIED
THEORY

A. Bi-Layer Photonic Crystal

To illustrate the semiclassical coupled wave theory, we
consider a two-layered periodic medium with real refrac-
tive indices n, and np and layer thicknesses a and b such
that d = a + b, as shown in Figure 1.

n(z)

n, aiz b al2
(] S>>

FIG. 1: Two-layered periodic dielectric structure (bi-layer
photonic crystal).

From the results of the previous section, for such a
structure we have

Nes a+ Npg b
Nav,g = ——F
n .
Smd = iln (ﬂ) e ™M
Nap
b
x sin (E [rm + ka(nps — nag)]) , (42)
where ngp5 = /02, — % are effective refractive indices

of the layers n, and np. As a result, at a given angle
of incidence 6y (8 = ngsinfy) the relative width of the
forbidden band with center k, in the first approximation
can be expressed as

we 2 nbs \ . mq
Ya _ 2} M) (43
kg  mq ‘ ! <”aﬂ) - (1 + naﬁa/”bﬁb)‘ (43)

From the transfer matrix method the relative width of
the same forbidden band can be obtained only numeri-
cally (albeit accurately) by solving the well-known exact
dispersion relation

cos¢ = cos(kngpa) cos(knygb)

n2, +n?
_ a8 T 08 sin(kngga) sin(knygb)  (44)

for | cos ¢| > 1 (the Bloch phase ¢ is complex in forbidden
bands).

In Fig. 2 we show the reflection coefficient for a two-
layered periodic structure of N = 8 periods whose layers
have refractive indices n, = 2.0 and nj = 1.5; and thick-
nesses ¢ = 100 nm and b = 250 nm. The structure is sur-
rounded by a homogeneous medium with refractive index
ng = ng & \/Eay = \/(n2a+nib)/d. A TE - polarized
plane monochromatic wave impinges on the structure at
angle p = 10°. We see that for a such set of parame-
ters all three approaches are in good agreement with the
results of exact numerical calculations.

In Fig. 3 we consider a more demanding situation: a
bi-layer photonic crystal of N = 4 periods whose lay-
ers have refractive indices n, = 1.34 (NagAlFg) and
np = 2.6 (ZnSe); and thicknesses @ = b = 90 nm placed
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FIG. 2: Reflection vs. frequency for a small angle of inci-
dence in the first two zones along k-axis, 0 < k < 37/(nqvd),
of the two-layered periodic structure with small refractive in-
dex modulation. The parameters of the structure are as de-
scribed in text. (a) - conventional coupled wave theory (thick
solid line); (b) - first approximation of the semiclassical theory
(thick solid line); (c) - second approximation of the semiclas-
sical theory (by x’s). The exact numerical results are shown
in all cases by a thin line.

on a substrate with n, = n, = 1.34. These parame-
ters correspond to those in an experiment of Chigrin et
al. [3]. A TE - polarized plane monochromatic wave
impinges on the crystal from the air ng = 1 at angle
fp = 45°. We see that conventional coupled wave theory
fails completely in the second zone along THE k-axis,
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37/ (navd) < k < 37/(nqud), while the first and espe-
cially the second approximation of the semiclassical the-
ory work well for all frequencies of the incoming waves.
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FIG. 3: Reflection vs. frequency for an average angle of inci-
dence in the first two zones along k-axis, 0 < k < 27/(nqavd),
of the bi-layer photonic crystal with average refractive index
modulation. The parameters of the structure are as described
in text. The lines are as in Fig. 2.

In Fig. 4 we further increase the refractive index con-
trast, with a bi-layer photonic crystal of N = 4 peri-
ods whose layers have refractive indices n, = 4.6 (tel-
lurium) and n, = 1.6 (polystyrene); and thicknesses
a = 800 nm and b = 1650 nm placed on a substrate
with ny; = n, = 4.6. These parameters correspond to
those in an experiment of Fink et al. [2]. A TE - polar-
ized monochromatic plane wave impinges on the crystal



from the air ng = 1 at angle 6, = 80°. Here, only the
second approximation of the semiclassical coupled wave
theory is in good agreement with the exact numerical cal-
culations over the entire frequency range. However, the
first approximation gives reasonable results within the
forbidden bands. Therefore, formula (43) for the widths
of forbidden bands remains a good approximation.
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FIG. 4: Reflection vs. frequency for a large angle of incidence
in the first two zones along k-axis, 0 < k < 37/(nqvd), of
the bi-layer photonic crystal with large refractive index mod-
ulation. The parameters of the structure are as described in
text. The lines are as in Fig. 2.

The above figures illustrate the fact that conventional
coupled wave theory gives reasonable results only for
small angles and small modulation depths (0n = np —
ng =~ 0.5), see Fig. 1. The first approximation of the

semiclassical coupled wave theory works well in forbidden
bands for the broad range of incident angles and modula-
tion depths, but it fails in allowed bands for high angles
and large modulation depths (én ~ 2.0 ... 3.0), see Fig. 4.
The second approximation developed in this paper is es-
sentially exact for any practically achievable modulation
depth and angle of incidence.

B. Periodic Structure with Triangular Profile of
Refractive Index

As a second application of our theory, we consider a
periodic structure with a (symmetric) triangular refrac-
tive index profile. As sketched in Fig. 5, the index of
refraction increases linearly from n, to n; along the first
half of the period d, and then returns to n,.

n(z)

N, Ns

(N-1)d Nd Z

FIG. 5: Periodic dielectric structure with triangular profile of
the refractive index.

An electromagnetic wave is normally (6 = 0°) incident
upon the structure from the region z < 0. In case of
normal incidence, light polarization does not play a role
and the results given below are valid for TM as well as
TE waves. In accordance with (10) and (12), for such a
structure we have

Ng + Ny
Ngy = T )
L +1
smd = % (45)
where
d/2 ei(k:(m,7na)(d72z)727rm)z/d
Il = / nad dZ,
0 z+ 2(np—na)
. d/2 ei(k(na—nb)(d—2z)—27rm)z/d
I, = emimm / — dz . (46)
0 z+ 2(na—np)

To illustrate the advantages of our theory, we take
a structure of N = 5 periods with a huge modulation
depth: n, = 1.3 and np = 4.8, on a period of d = 500
nm, surrounded by a homogeneous medium with refrac-
tive index ng = ny = 1. In Fig. 6 we see that, as be-
fore, only the second approximation of the semiclassical
coupled wave theory is in good agreement with exact nu-
merical calculations over the entire frequency range.
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FIG. 6: Reflection vs. frequency for normal incidence in the
first two zones along k-axis, 0 < k < 37/(navd), of the di-
electric periodic structure with a symmetric triangle profile of
the refractive index with large modulation. The parameters
of the structure are as described in text. The lines are as in
Fig. 2.

IV. CONCLUSIONS

The semiclassical coupled wave theory has been ex-
tended to the case of oblique incidence for T E waves.
The theory was also extended to second order; it turns
out to be essentially exact for any achievable refractive
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index contrast in 1-D photonic crystals. Expressions for
the reflection and transmission coefficients as well as for
the band widths in the first and second approximations
were obtained for one-dimensional finite periodic struc-
tures. The analytical relation between solutions in terms
of Bloch waves and in terms of semiclassical coupled
waves has been established. Applications to two types
of cells illustrate how the theory can be used.

The theory presented here provides a convenient way
to derive analytic solutions for waves propagating in one-
dimensional periodic structures, solutions that are both
relatively simple and essentially exact. The remaining
task is to extend the work to the case of TM waves.
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APPENDIX A: DERIVATION OF THE SECOND
APPROXIMATION

As was stated in the main text, in accordance with the
method of averaging, see ref. [19], we seek a soltution
of the exact system (15), as a superposition of slowly-
varying terms B*)(z) plus a sum of small oscillatory
terms (16). Further, according to this method, there is a
simpler system (17) for the slowly-varying terms only.

Let us substitute the solutions (16) into the system
(15). This gives

dB(+) N @ 56 4w dB(-)
dz dz = (4) Yz
+ 250 1]2‘“3

> —
= i, (B9 4 0 BO) 4B + )
+ Y st Fm0): (BH +vi B + ) ;

dB)  dvr dB)
LR o2

dz +dz _(j)—vl dz

N PR

= —id, (BH + i B 403 B + )
+ Z st e~ F (m=a)z (B(+) + 0B+ ) (A1)
m

Corresponding expressions for dB™) /dz and dB(~)/dz
can be taken from the system (17). Then, after some
algebra, the relations (A1) take the form
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Extracting from this system those terms which are linear
in the small quantities s,,,d and d,d, we obtain

d 2w
01+E—2251}1 —3q+28m i (m=q)z
m#q
c+ d )=s; +Zsei2qu)z (A3)
m#q

The coefficient ¢; does not depend on z. Therefore, the

— 2i6,v1 (z)) B () + (CQ T

= (sq + Z et & (m=a)z (B( )(2) + v} (2)B®) (2) + ) )
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dva (z)

+cin (z)) BM(2) + ...

dv3 (2)

+ clvf(z)) B (2) +

(A2)

first of the relations (18) and the relation (19) follow
immediately from (A3). Similarly, extracting the terms
which are bilinear in the small quantities s,,d and 6,d,
and taking into account the fact that the coefficient cy
also does not depend on z, we obtain the second of the
relations (18).
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