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to an arbitrary periodic superlattice, so as to create an optimal electron band-pass �lter.
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I. INTRODUCTION

The propagation of electron waves through layered
periodic structures (superlattices) is a problem of con-
tinuing interest with practical applications. The basic
property of these structures is the appearance of allowed
and forbidden energy bands for electrons passing through
them. For a superlattice with more than a very few pe-
riods, the transmission is almost zero in forbidden bands
and shows narrow transmission resonances in the allowed
bands.
Recently, a number of authors [1{4] have suggested

ways to modify a �nite periodic superlattice, so that in-
cident electrons would be fully transmitted over a large
part of the entire allowed band, and otherwise reected.
The result would be an energy band-pass �lter with a
suitably designed superlattice as the active medium. Two
ways to modify the basic periodic superlattice were con-
sidered: the addition of a cell with new parameters at
both ends of the periodic superlattice (an antireection
coating or ARC) by Pacher et al. [1], and the variation
of either widths or heights of the barriers of the basic
structure itself [2{4]. Here we concentrate on the �rst
method, for which the experiment of Pacher et al. con-
�rmed a signi�cant e�ect. Moreover, the simplicity of
the modi�cation allows us to give a direct and complete
solution to the problem.
In the references cited, solutions were obtained numer-

ically and the improvements in transmission properties
were presented as recipes, sometimes with little expla-
nation. Further, those solutions are valid only for the
square barrier system considered. The problem of modi-
fying an arbitrary initial periodic superlattice to make an
energy band-pass �lter has not, to our knowledge, been
discussed.
In the present paper, we derive general analytical ex-

pressions for the parameters of an additional cell (ARC)
that should be added at both ends of an arbitrary peri-
odic structure in order to achieve optimal transmission
within the allowed band. An important aspect of our
method is that we concentrate on the envelope of min-
ima of the transmission resonances. This allows us to

ensure optimal properties while avoiding the complica-
tions associated with the rapidly oscillating amplitudes.

II. GENERAL SOLUTION BY TRANSFER

MATRIX METHOD

We consider an arbitrarily shaped real potential cell
v(x), de�ned on 0 < x < d and zero otherwise. The po-
tential vN (x) is de�ned to be the same potential repeated
N times, on the interval 0 < x < Nd. The corresponding
transfer matrices are denoted U and UN respectively. We
denote the transfer matrix of an additional cell va(x) on
either side of the periodic structure by A. The transfer
matrix M for the augmented structure is

M = A UN A : (1)

According to Ref. [5], the transfer matrix A for any real
potential can be written in terms of its reection and
transmission amplitudes ra and ta as

A =

�
a11 a12
a21 a22

�
=

�
1=ta r�

a
=t�
a

ra=ta 1=t�a

�
: (2)

The matrix U is expressed similarly with replacement
of a ! u throughout. Because our potential takes a
constant value outside the region where v(x) and va(x)
are de�ned, conservation of ux requires that

jtsj
2 + jrsj

2 = 1 ; (3)

where s can be either of the labels u, or a. This makes
both detU = 1 and detA = 1.
The N -th power of a unimodular matrix U can be ex-

pressed in the form [5]

UN =
sinN�u
sin�u

U �
sin(N � 1)�u

sin�u
1 (4)

where cos�u = (u11+ u22)=2 de�nes the Bloch phase as-
sociated with the in�nitely periodic potential whose unit
cell is v(x). Typically, if the number of periods N > 3,
well de�ned allowed and forbidden bands for the energy
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of passing electrons are determined by the properties of
the periodic structure. Adding a few additional cells gen-
erally changes the transmission properties only inside al-
lowed bands, leaving the transmission through forbidden
bands close to zero. (Surface states and isolated states
based on defects are an exception to that rule.)
Therefore, the design of an energy band-pass �lter pro-

ceeds in two steps. First, we select the parameters of a
periodic structure with an allowed band in the desired re-
gion of energies. We use the lowest allowed band for this
purpose, so that all electrons with energies less than its
lower boundary El will be perfectly reected. Secondly,
we determine the parameters of the additional cells so
as to enhance transmission through the allowed band as
much as possible.
The Bloch phase is real (�1 < cos �u < 1) in an al-

lowed band. To �x its boundaries we require that

cos�u(El) = +1 ; cos�u(Eh) = �1 (5)

where Eh is the desired upper boundary of the �rst al-
lowed band. We denote by Em = (El+Eh)=2 the energy
at the mid-point. (Actually, we can select Em to be any-
where in the band, but it turns out to be best to be
somewhere near the center.)
Next, we choose the parameters of the ARC so that

the augmented system will act as a pass-band �lter. The
transmission through the system can be expressed in
terms of the o�-diagonal element M21 of the total trans-
fer matrix M as

jTN j
2 =

�
1 + jM21j

2
��1

: (6)

Using eq. 2, after some algebra we are able to write

jM21j
2 =

���2 � 2�� cos�u + �2
�� ���� sin2(N�u + �)

sin2 �u

���� ; (7)

where the parameters �, �, and � are simple combina-
tions of elements of the matrices U and A:

� = a21(a11u11 + a22u22) + a11a22u21 + a221u12 ;

� = a21(a11 + a22) ; tan � =
� sin�u

�� � cos�u
: (8)

When both v(x) and va(x) are reection symmetric, the
o�-diagonal elements of the matrices U and A are purely
imaginary which makes u12 = �u21 and a12 = �a21. In
this case, (see eq. 2), � and � are pure imaginary, and �
is a real angle. By dropping the factor sin2(N� + �) in
eq. 7, we obtain the envelope of the transmission minima

in allowed bands, which is a curve independent of N :

jTN j
2
min =

1

1 +
���2 � 2�� cos�u + �2

��=sin2 �u : (9)

By making the envelope reach perfect transmission at
E = Em we obtain the best transmission pro�le possible,
since the �rst derivative of the transmission minimacurve

is zero at this point as well. This ensures that deviations
of jTN j2 from unity are minimal except close to the zone
boundaries, where jTN j

2 necessarily vanishes.
To obtain such an envelope of minima we must have

both � = 0 and � = 0 at the energy Em. This gives two
conditions on the elements of A:

a22 = �a11
a11
a21

+
a21
a11

=
u11 � u22

u21
: (10)

The �rst line says the additional cell is a Bragg reector
at energy Em, i.e. cos�a(Em) = Re[a11] = 0. Its reec-
tion amplitude ra(Em) = a21=a11 is purely real at that
energy. Then, taking into account eq. 3, we can rewrite
the second condition in a physically relevant form as

ra(Em) = x�
p
x2 � 1 ; x = (u11 � u22)=(2u21) : (11)

When N is large, the oscillations of jTN j2 are very
narrow. Averaging over them, which is appropriate for
an incident wave packet, the mean transmission within
the allowed band is given by [5]

jTN j
2
av

=
q
jTN j2min

=
1s

1 +

���2 � 2�� cos �u + �2
��

sin2 �u

: (12)

This result assumes only that � and � are varying slowly
in comparison with N�u.
Finally, we de�ne the average transmissivity � for elec-

trons passing through the allowed band as

� =
1

(Eh �El)

Z
Eh

El

jTN j
2dE : (13)

�av is the same quantity, but with integrand jTN j2av. At
least for large N , we expect that �av ! � . Numerical
examples (see below) show that this equality holds for
N as small as �ve. Because jTN j

2
av is a smooth curve,

the square root of the envelope of minima, it has a clear
physical meaning, and �av is much easier to estimate than
is � .

III. CASE OF DELTA FUNCTIONS

To illustrate our method, we consider an energy band-
pass �lter consisting of a row of delta-functions of
strength Cu and spacing d as the periodic medium. For
the unit cell one has (see for example [5])

tu =
k

k + i
u

eikd ; ru =
�i
u

k + i
u

eikd ; (14)

where k2 = 2m�E=�h2, 
u = m�Cu=�h
2, and m� is the

e�ective mass. The transfer matrix U takes the form
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U =

�
(1 + i
u=k) e

�ikd i
u=k
�i
u=k (1� i
u=k) e

ikd

�
: (15)

The Bloch phase �u is given by

cos �u(k) = cos kd+

u

k
sin kd : (16)

The parameters 
u and d, are determined by the desired
band edges: cos �u(kl) = 1, and cos �u(kh) = �1. These
lead to

d = �=kh


u = kl tan(kld=2) : (17)

If the antireection cell is a delta potential as well, the
cell reection ra and transmission ta amplitudes are �xed
by the two conditions (10) with

x =
km

u

sin(kmd)� cos(kmd) ; k2m =
2m�

�h2
Em : (18)

Then, we can �nd the cell width a and the strength 
a

using the expressions (14) in which one should replace

u by 
a and d by a.
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FIG. 1. Transmission probability vs. energy in the �rst
allowed band of a superlattice with N = 5 deltas of strength

u = 0:55 nm�1 and period d = 8:14 nm; dashed line - no
additional cells; solid line - there is one additional cell with
strength 
a = 0:23 nm�1 and period a = 6:52 nm on each side
of the superlattice. Dotted lines are the envelopes of minima.

As a speci�c example, we place the allowed band at
40 meV< E < 80 meV. Eqs. (17) determine the pa-
rameters as 
u = 0:55 nm�1 and d = 8:14 nm; the
strength Cu = �h2
u=m

� is 590 meV � nm for constant
m� = 0:071me, appropriate to an electron at energy 50
meV above the conduction band edge in GaAs. Then, for
the additional cell, eqs. (11) with x from eq. (18) gives
ra(Em) = 0:57 and ta(Em) = 0:82i, which correspond to

a = 0:23 nm�1 and a = 6:52 nm. The results are shown
in Fig. 1. The transmission through the augmented sys-
tem (solid line) shows a signi�cant increase compared to
the transmission for the periodic structure alone (dashed

line). The average transmissivity, eq. (13), is � = 0:82 for
the augmented superlattice, double the � = 0:41 for the
initial superlattice. For �av we �nd the same transmis-
sivity, within numerical accuracy. This is evidence that
the number of periods N = 5 can be considered large
enough for jT j2

av
to be a useful concept. The dotted lines

in Fig. 1 show the envelope of transmission minima in
both cases.

IV. CASE OF SQUARE BARRIERS

As an application of our result, we consider a band-
pass �lter based on a square barrier superlattice. The
barriers are of height Vu, width d2, and separated by d1.
The transfer matrix U has elements

u11 = (cos �d2 � ic(+) sin �d2)e
�ikd1 = u�22

u21 = �ic(�) sin(�d2) = u�12 (19)

where c(�) = (k2 � �2)=(2k�), and k2 = 2m�E=�h2, �2 =
2m�(E � V )=�h2. The dispersion equation for the Bloch
phase �u is

cos �u = cos(�d2) cos(kd1) � c(+) sin(�d2) sin(kd1) :

(20)

The allowed band is �xed by the two lowest energy so-
lutions of eq. 5. The reection amplitude ra(Em) of the
additional cells is found from eq. 11, where from eq. 19

x =
cos(�md2) sin(kmd1) + c

(+)
m sin(�md2) cos(kmd1)

c
(�)
m sin(�md2)

(21)

with c
(�)
m evaluated at energy Em. If we take the addi-

tional cell also to be a square barrier, we have the barrier
height Va, the barrier width a2, and the well width a1 of
va(x) to be determined from the expressions for the ele-
ments of the matrix A, which has the same form as eq.
19, replacing V , d1, and d2 by Va, a1, and a2 respectively.
To be speci�c, consider a band-pass �lter with param-

eters based on the experiment of Pacher et al. [1]. Their
experiment was modelled as a periodic array of N = 6
square barriers of height V = 290 meV, corresponding to
an Al0:3Ga0:7As/GaAs superlattice. The barriers were of
width d2 = 2:54 nm (9 monolayers of Al0:3Ga0:7As) and
their wells d1 = 6:50 nm (23 monolayers of GaAs). As
before, we use a constant e�ective mass m� = 0:071me,
appropriate to an energy near the band center. Using
eq. 5, the allowed band extends from 49:7 meV< E <
73:2 meV. The lower set of curves in Fig. 2(a) shows the
results for this array.
To improve the transmissivity, Pacher et al. [1] took the

widths of the barrier and the well of the additional cell
to be a2 = d2=2 and a1 = d1, keeping the barrier height
Va = 290 meV. With this choice, one has an array of six
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cells, each of which is a resonant tunnelling diode. Their
transmission pro�le is shown by the upper set of lines in
Fig. 2(a). Its envelope of minima reaches 100% near the
low energy boundary, rather than at the centre of the
allowed band. The average transmissivity is � = 0:81,
already a signi�cant improvement over 0:25 for the initial
periodic superlattice.
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FIG. 2. Transmission probability vs. energy for (a) the de-
vice of Pacher et al., and (b) the optimized ARC, as described
in text. Dashed lines: without ARC; solid lines, with ARC.
The envelope of minima eq. (9) is shown in all cases.

To optimize the ARC, eq. 11 prescribes ra(Em) =
0:73. For a given barrier height Va of the additional cell,
the well and barrier widths follow from

cos(kma1) = ra(Em) c
(+)
ma =c

(�)
ma

cot(�maa2) = c(+)ma tan(kma1) ; (22)

where c(�)ma = (k2m��
2
ma)=(2km�ma), and �

2
ma = 2m�(E�

Va)=�h
2.

For Va = 300 meV (Al0:32Ga0:68As), the optimal
widths are 1:17 nm for the barrier and 5:96 nm for the
well. The closest integer number of monolayers is 4 for
the barrier, giving a2 = 1:13 nm, and 23 for the well
(GaAs), so a1 = 5:94 nm. The results are shown in
Fig. 2(b). The transmission pro�le is improved over
that in reference [1], because our envelope of minima is

more symmetrically placed, giving a higher transmissiv-
ity � = 0:86. Another solution would be to take Va = 153
meV (Al0:16Ga0:84As), giving optimal widths 2:22 nm for
the barrier and 5:07 nm for the well. The closest integer
number of monolayers is then 8 for the barrier, a2 = 2:26
nm, and 18 for the GaAs well, a1 = 5:09 nm. The re-
sults are very similar to the previous case with the same
transmissivity � = 0:86. In all of these examples, �av = �
holds within numerical accuracy.

V. CONCLUSION

Transmission through a superlattice miniband is char-
acterized by a sequence of narrow resonances with jT j2

oscillating between an envelope of minima (see eq. 9),
and 100%. When the number of cells is large, the mean
transmission probability is given accurately by the square
root of that envelope of minima. The design of an e�-
cient �lter requires that the envelope of minima touch
unity at a point near the centre of the band, and should
be as at as possible in the vicinity.
We have shown how to design an antireection coating,

consisting of a cell placed on either end of the periodic
structure, to satisfy this criterion. It must be a Bragg
reector, and must have a reection coe�cient speci�ed
by eq. 11. The shape of the potential chosen for the ad-
ditional cells is arbitrary; all that is necessary is that it
provide the required values of cos�a and ra(Em). In our
examples we worked with a limited number of param-
eters so the solution was greatly constrained. Further
improvement in the �lter properties would require addi-
tional derivatives of the envelope of minima to vanish at
the chosen energy Em.
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