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I. INTRODUCTION

In a recent experiment [1], a strongly isolated quantum
dot was charged with excess electrons, and their sequen-
tial escapes were recorded over a one hour time period.
This was repeated 150 times to obtain a statistical distri-
bution of decay times. The dot is formed in an electron
gas located at a depth of 70 nm in a GaAs�AlGaAs het-
erostructure. Its shape is de�ned by electrostatic con�ne-
ment using a set of gates, as sketched in the insert to Fig.
1 . The gate voltages were ramped up quickly, so that the
dot retained a sizeable number of excess electrons when
it was well isolated from the surrounding electron gas.
The observations correspond to sequential tunnelling of
(seven) electrons from the dot to the surroundings. The
lifetimes extracted from the escape times distribution [1]
are shown in Fig. 1. A striking quasi-linear dependence
of the logarithm of the lifetime on electron number is
apparent.
Sequential decays have been known and studied for

over a century in the context of nuclear physics. The
combined instances of alpha and beta decays from the
heaviest elements are responsible for most natural ra-
dioactivity. The description of alpha decay in terms of
tunnelling of alpha particles through a con�ning potential
dates back to the 1920's (Gamow [2], Condon and Gurney
[3]). Although the basic nature of the decay as a barrier
penetration is well understood, accurate predictions for
radioactive lifetimes are di�cult because the process by
which the escaping alpha-particle is preformed within the
nucleus requires an understanding of four-body correla-
tions. As a result, it is impossible to deduce accurate
information on the barrier shape. Nevertheless, alpha
decays have provided useful information on nuclear radii
and the range and gross features of the nuclear interac-
tion [4].

FIG. 1. Experimental lifetimes (in seconds) extracted from
the decay sequences, as reported ref. [1]. The insert shows
the gate arrangement which de�nes the dot.

It has become commonplace to say that a quantum
dot is an arti�cial atom, but in fact the self-consistent
potential con�ning electrons in a large dot has more in
common with the mean �eld potential in a heavy nu-
cleus: 
at in the interior, with abrupt walls. An arti�cial
nucleus is a more apt description, as will become clear
in this paper. Indeed, the detection of sequential decays
from an isolated quantum dot is a more favourable sit-
uation for study of the decay process, as the question
of preforming the electron does not arise. Hence, we can
more con�dently test our knowledge of the con�ning bar-
riers for electrons, as well as the pro�le, and dependence
on occupation number, of the dot potential. We will an-
alyze these aspects in this work, and show that these
measurements of the lifetimes of \radioactive quantum
dots" introduce new constraints on our ability to model
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their structure.
The present experiment has another signi�cant advan-

tage over nuclear decays: instead of counting incoherent
decays from a large sample of identical nuclei, here a
single dot is involved, and the correlation between con-
secutive events can be analyzed. In addition, it should
be possible to design the shape, density and excitation
energy of the dot within rather broad margins, so that
future experiments on mesoscopic systems will be much
more 
exible than those in nuclear systems, where only
those nuclei existing in nature, or created in su�cient
numbers, can be studied. Thus, the study of electron
decays from a quantum dot has the potential to reveal
new features of the tunnelling process. This is a topic of
currently renewed interest: see for example van Dijk and
Nogami [5]. The type of simple model developed in this
paper can be of great utility in such future studies.
In this work we will describe the decay process using

analytic models which incorporate characteristics of the
con�nement potential extracted from realistic numerical
simulations. As the dot contains about 300 electrons,
Poisson-Thomas-Fermi calculations should be adequate
to describe the electron density and the con�ning poten-
tial of the dot. With these in hand we have developed
accurate analytic approximations for the con�ning poten-
tial that allow us to construct an envelope approximation
wavefunction for the electrons in the dot, and to compute
the electron lifetimes from a fully quantal expression for
the transmission amplitude across the barrier.
Previous works which model a quantum dot have been

concerned with the wave functions of con�ned states in
the dot, the electron density distribution and the shape
of the con�ning potential. For such purposes, only the
inside of the barrier matters. It is when one looks at the
escape of electrons from the dot that the barrier height,
its width and shape become important; these are the
new features explored in this paper. In section II we
describe the development of our model, while in Section
III we discuss the results for the sequence of lifetimes
and compare them with experiment. Some details are
relegated to two appendices.

II. MODELLING OF ISOLATED DOT DECAYS

A. Framework

The Poisson-Thomas-Fermi modelling is described in
more detail elsewhere [6], so here we list only the main
steps:
i) �rst, Poisson-Schr�odinger (PS) and Poisson-Thomas-
Fermi (PTF) simulations as described in [7] are per-
formed for the ungated heterostructure. Our inputs for
the PS simulation are the thickness and composition of
each layer in the heterostructure, and the dopant con-
centration in the donor layer. From these we predict

the density of the 2DEG. The only adjustable param-
eter is the donor ionization energy which is set to be
e�i = 0:12 eV , in order to reproduce the measured 2DEG
density, ne = 2:74 1011 cm�2. For the simpler Poisson-
Thomas-Fermi scheme we employ a common relative per-
mitivity "r = 12:2 for all layers of the heterostructure,
which, combined with the parameters already used for
the PS simulation, also reproduces the experimental ne.
After this \�tting" the model has no other free parame-
ters.
ii) For the gated structure we use the gate layout and
voltages of the experiment. To solve the Poisson equa-
tion for the gated heterostructure one has to impose as a
boundary condition the value of the electrostatic poten-
tial on the exposed surface of the heterostructure, and
on the gates. We assume Fermi level pinning and choose
the energy of the surface states as the zero of the energy
scale. In this convention, the conduction band edge is
set at eVs = 0:67 eV on the exposed surface. Under each
gate the conduction band is set at eVms + eVg , where Vg
is the gate voltage and the metal semiconductor contact
potential, eVms, is taken as 0:81 eV [9]. The electrostatic
potential due to the gates is then computed using semi-
analytic expressions based on the work of Davies et al.
[10] and [11]. Added to this are: a) the Coulomb po-
tential (direct term) between the electrons, and a mirror
term which imposes the boundary conditions at the sur-
face, and b) the contribution from the fully ionized donor
layer and its mirror term (see Sect. IIA of [8] for details
of a similar example.) We neglect exchange and correla-
tion e�ects, which are small.
iii) The connection between the con�ning potential de-
�ned by the conduction band edge and the electron den-
sity is completed by using the Thomas-Fermi approxima-
tion at zero temperature:

�e(~r) =
1

3�2

�
2m�

�h2
(EF � eV (~r))

�3=2
(1)

The PTF iteration is performed starting from the un-
gated heterostructure densities as trial values.

B. Equilibrium dot

As a �rst step, we examine the dot in its �nal state
after all the excess electrons have escaped. This corre-
sponds to a PTF simulation with the same Fermi level,
EF;dot = 0, for the electrons in the dot and in the 2DEG
outside the barriers. The gate voltages are taken from
ref. [1] as VPL = �0:40 V , VC1 = VC2 = �0:44 V and
VH = �0:7 V . The predicted PTF 3D electron distribu-
tion �e(x; y; z) is more conveniently visualized in terms
of a projected 2D density:

ne(x; y) =

Z
1

zj

�e(x; y; z) dz ; (2)
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where zj is the junction plane. The ne(x; y) distribu-
tion, shown in Fig. 2, has an approximately rectangular
boundary, and its maximum value is close to the 2DEG
density of the ungated heterostructure. In this calcula-
tion the dot contains 286 electrons.
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FIG. 2. The two dimensional PTF density, ne(x;y), for a
dot in equilibrium with the surrounding 2 DEG.

C. Dot with excess electrons

To study these con�gurations we set the Fermi level in-
side the dot, EF;dot, higher than its value outside the bar-
riers, EF;2DEG = 0. We can do so because the dot is well
pinched o� from the surrounding electron gas. We ran
PTF simulations with equally spaced values for EF;dot
running from 0 to 17:5 meV in steps of 2:5 meV . The
occupation Q of the dot increases linearly with EF;dot
at the rate 2:75 electrons per meV, giving occupations
286 � Q � 334.
The simulations also produce the con�ning potential

for the electrons in the dot, eV (x; y; z). To reduce this to
a two-dimensional function, U (x; y), we take a weighted
average over the density pro�le in the z direction:

UPTF (x; y) =

R
1

zj
eV (x; y; z) P (z) dzR

1

zj
P (z) dz

(3)

where

P (z) =

Z



�e(x; y; z) dx dy : (4)

Here the domain of integration 
 is a rectangle in the xy
plane which extends a short distance into the surround-
ing electron gas, (from (xl; yl) = (�510 nm;�255 nm) to
(xr; yr) = (510 nm; 255 nm).) This includes an area out-
side the dot where the 2DEG is still depleted by the gates.
Although the computed V (x; y; z) is not separable, pre-
vious experience with Poisson-Schr�odinger simulations of
wires [8], [12] and circular dots, has shown us that the
factorization ansatz leads to very good approximations
when the z degree of freedom is integrated out as in eq.

3. This prescription to construct the 2D potential avoids
the type of ad hoc assumptions often made.
In Fig. 3 we show the UPTF (x; y) corresponding to

the equilibrium dot of Fig. 2. As expected from the
gate layout shown in the inset to Fig. 1, it has two very
high barriers running parallel to the x axis, one centered
at y = 0 and the other that begins with a steep rise at
y ' 400 nm (and shows clearly the mark of the three-
�ngered gate layout labelled C1; C2, and PLunger in
Fig. 1). Tunnelling across these barriers is negligible.
In addition there is a symmetric pair of barriers running
parallel to the y axis, with maxima at x ' �238 nm
through which the electrons do tunnel. In the interior,
the potential is practically constant. Although these x-
barriers have somewhat increasing height with increasing
y, the rectangular shape of the potential suggests using
a separable approximation in cartesian coordinates:

UPTF (x; y) ' Us(x; y) = U (x) +W (y) (5)
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FIG. 3. Two dimensional con�ning potential, UPTF (x; y)
for the dot of Fig. 1.
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FIG. 4. Continuous lines: sections at y = 200 nm of the
UPTF (x; y) corresponding to EF;dot = 0:0; 0:005; 0:010 and
0:015 eV . Dashed lines: analytic parametrization for U(x)
as described in the text (the latter shown only for x > 0 for
clarity.)
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We will interpret the experimental decay data using
this separability ansatz. For the W (y) barriers, which
are basically impenetrable, we use two simple models de-
scribed below. As a guide to a realistic choice for the
x-dependent term we examine in Fig. 4 the pro�les of
UPTF (x; y) at a �xed value of y = 200 nm in the middle
of the dot. The pro�les shown cover a range of occu-
pations of up to forty excess electrons. In this range,
the potential at the dot center increases linearly with Q,
according to

U0 = 0:347Q� 118:4 meV : (6)

At large distances outside the dot, U1 = �18:8 meV is
constant. Similarly, the location of the barrier maximum
and its height can be parametrized as:

xb = 238�
Q� 286

16
nm

Ub = 0:117Q� 13:4 meV : (7)

Note that dUb=dQ � 1=3dU0=dQ re
ects the decrease
of the screened Coulomb repulsion away from the cen-
ter of the dot. Furthermore, we have found that the
x-dependence can be very well reproduced (see Fig. 4)
using the following analytic model:

U (x) = Ub + UMF (x) ; x > 0;

= U (�x) ; x < 0; where

UMF � Uc
sinh2

�
x�xb
wb

�
cosh2

�
x�xb
wb

� �
� (8)

This potential form has the great advantage that the
transmission coe�cient for UMF is known analytically
[13]. UMF is an asymmetric barrier which takes one value
for x << xb and another value for x >> xb:

UMF (xb) = 0

UMF (1) � lim
x!1

UMF (x) = Uce
2�

UMF (�1) � lim
x!�1

UMF (x) = Uce
�2� : (9)

The parameters Ub; Uc; �; xb; wb allow one to �t the bar-
rier height, the potential 
oors inside and outside the
dot, the barrier spacing and the barrier width. Since the
barriers are spread quite far apart, in practice xb >> wb,
so UMF (x = 0) � UMF (�1). In this case,

U0 � U (0) � Ub + Uce
�2�

U1 � lim
x!1

U (x) = Ub + Uce
2�: (10)

Then we can solve for

� =
1

4
ln

�
Ub � U1
Ub � U0

�
and

Uc = �(Ub � U0)e
2� : (11)

To determine the parameters appearing in eq. 8, we take
the values of the PTF potential at the origin, U0, well
beyond the barrier, U1, and the value Uxb at the barrier
maximumx = xb, and then plot U (x) to �nd the best wb,
which turned out to be 48 nm. This gives a convenient
analytic form for the con�ning potential, motivated by
PTF, whose transmission coe�cient is:

T =
2 sinh(�k+) sinh(�k�)

cosh(�(k+ + k�)) + cosh(��)
; (12)

where

k�=+ =

r
2m�

�h2
(E � U0=1)w

2
b and

� =

r
2m�

�h2
(2Ub � 2Uc � U0 � U1)w2

b � 1 : (13)

Barrier shape W (y): In Fig. 5 we examine a section
of UPTF (x = 0; y) through the center of the dot. We
use two approximate models, the simplest one being an
in�nite square well, of width wy � 350 nm. The slightly
fancier one is a truncated harmonic oscillator:

Wtho(y) = 0 (
at bottom)

= �0:13 +
1

2
ky(y � y0)

2 (walls) : (14)

with y0 = 238 nm and ky = 7:35 � 10�6 nm�2. As can
be seen in Fig. 5 this parametrization (plus the constant
term U0) reproduces the main features of the x = 0 sec-
tions of the PTF potentials.
By combining eqs. 6 to 14 we determine a separable

analytic potential model for the dot containing a desired
number Q of electrons. This removes the necessity of re-
peatedly solving the PTF equations for the self-consistent
�eld, while studying the decay process.
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FIG. 5. Continuous lines: sections at x = 0 nm of the
UPTF (x; y) for the same EF;dot as in Fig. 3. Dashed lines:
analytic parametrization of Wtho(y) + U0 as described in the
text.
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D. Quasibound states of the dot

We construct the electron wave functions inside the
dot in the envelope function approximation, using our
parametrized potential, Us(x; y). The single electron en-
ergies are

Enx;ny = Enx + Eny (15)

and the electron wavefunctions factorize

	nx;ny (x; y) = �nx(x) ny (y) : (16)

The factors satisfy 1D Schr�odinger equations:

�
�h2

2m�
�00nx(x) + U (x)�nx(x) = Enx�nx(x)

�
�h2

2m�
 00ny (y) +W (y) ny (y) = Eny ny(y) (17)

The second equation is for a con�ned wavefunction, eas-
ily solved by standard numerical methods. We label the
solutions by the number of loops, ny, of the eigenfunc-
tion. For example, taking W (y) to have hard walls, the
energy is

Eny;sw =
�h2

2m�

�
ny�

wy

�2
: (18)

For the truncated harmonic oscillator shape there is no
similar analytic expression, but the dependence on ny is
similar.
The x-dependent equation describes 1D electrons con-

�ned in the dot by the \leaky barriers". Weakly qua-
sibound state solutions were computed using methods
described in [14]. However, for levels corresponding to
the long tunnelling lifetimes observed in the experiment,
the energies and eigenfunctions can be computed well
enough by the simpler prescription of setting the electron
wavefunction to zero at the points �xb inside the barri-
ers. Furthermore, if only the eigenvalues and lifetimes
are needed, we have checked that the WKB quantization
condition is adequate:Z xr

xl

r
2m�

�h2
(E(nx)� U (x)) dx =

�
nx �

1

2

�
� (19)

In the Appendix we describe the determination of the
lifetimes, �nx . From here on the energies presented are
obtained in the WKB approximation. The di�erences
from the more accurate predictions using the true quasi-
bound state energies can scarcely be seen on the scale of
the graphs. For barrier penetrability we use eq. 12.
We \construct" the desired dot con�guration with ex-

cess electrons by generating a Us(x; y) for the chosen
value of Q, and �lling the levels as follows: a) First we
list the (Enx; �nx), in order of increasing nx (and there-
fore of increasing energy and decreasing lifetime.) This
list is truncated at an nx = nx;max whose lifetime is less

than 0:01 sec: b) Next we form a list of 2D levels (nx; ny)
by choosing those for which

Enx +Eny � Enx;max
+ Eny=1 : (20)

The levels in this list are occupied in order of increasing
energy and according to Fermi statistics, see eqs. A5
A6. We choose the dot Fermi level so that the number of
electrons is the desired Q. It is supposed that, for the long
lifetimes observed in the experiment, the electrons have
time to lose energy by phonon collisions and occupy the
quasibound states of lowest energy. Then, as described in
Appendix A, we determine the lifetime for one electron
to escape from the dot. This involves a weighted average
of the level lifetimes, according to the occupancy of each
level at the experimental temperature, T 0 = 100 mK.
To produce a sequence of decays for comparison to

experiment we proceed as follows: i) we start with a
dot containing a number of electrons, Q0, chosen large
enough so that the lifetime for one electron to escape
is smaller than those observed in experiment. ii) We
redetermine the barrier and dot con�guration for Q =
Q0 � 1 electrons, as described in the above paragraph
and determine again the corresponding lifetime for escape
of one electron. This process is repeated to generate a
sequence of decays that covers and extends beyond the
range of lifetimes measured in experiment. From that
list we choose as the �rst observed electron decay that
corresponding to the Q whose lifetime is the �rst to be
larger than t0 = 25 seconds.
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FIG. 6. Calculated lifetimes (in seconds) when W (y) is ei-
ther the truncated harmonic oscillator: stars, or a square well
with wy = 380 nm: + signs . The dotted line is the prediction
of the two level model, eq. 22.

III. RESULTS AND DISCUSSION

In Fig. 6 we show results from our model, using param-
eters chosen as described above, for a range of lifetimes
extending over three orders of magnitude. The stars cor-
respond to the truncated harmonic oscillator choice for

5



W (y), whereas the +'s are for the square well choice
(with a value wy = 380 nm chosen to optimize the agree-
ment with the other prescription in the range of experi-
mental lifetimes, from 10 to 1000 seconds.) One sees that
the trends are very similar. For Q in the neighbourhood
of 304, the predicted decay lifetimes fall in the experi-
mental range.
As already mentioned in Section II, our PTF simula-

tions predict Q = 286 for the dot in equilibrium with the
surrounding electron gas. This is also what we �nd with
this separable model, as the curve of lifetimes shown in
�gure 6 extrapolates smoothly up to Q = 287, for which
we predict a lifetime of log10 � = 5:2, or 44 hours. After
that, the Fermi level of the electrons inside the dot falls
below that of the surrounding 2DEG and further decays
are blocked. It should take almost two days for the dot
to reach equilibrium with its surroundings.
Before attempting a more detailed comparison with

the experimental data it is useful to examine the main
features in our predicted sequences. First we focus on
the linear behaviour for values Q < 300. (We have
found similar behaviour in other ranges of Q when we
use slightly di�erent sets of parameters.) Such linear de-
pendence occurs when our model produces a sequence
of decays dominated by those from a single 1D elec-
tron level; i.e. corresponding to a �xed value of nx. To
understand why, suppose that at zero temperature and
for Q electrons, the occupied level with shortest lifetime
is (nx;s; ny), and that fn0x; n

0

yg are occupied levels with
higher energy and longer lifetime (this requires that at
least n0x < nx;s for longer lifetime and n0y > ny for higher
total energy.) When one forms the Q�1 electron con�g-
uration according to the rules explained above, one of the
fn0x; n

0

yg levels will be empty, whereas the level (nx;s; ny)
will again be �lled. In more physical terms: all the elec-
trons with energy above that of the level with shortest
lifetime will lose energy by phonon collisions and fall into
the leaky level, from which they �nally escape. Since the
lifetime does not depend on ny, all the electrons with
energy above that of the state (nx;s; ny = 1) will escape
through the same leaky 1D level, nx;s, which remains the
favoured decay channel as long as it is occupied. There-
fore the total probability for one electron to escape from
the occupied states with quantum number nx;s is the
probability for a single 1D electron with energy Enx;s ,
multiplied by the number of electrons in occupied states
with the same quantum number nx;s: qnx;s:

� (Q) =
�nx;s(Q)

qnx;s(Q)
; (21)

and when the occupation qnx;s of the leaky level is con-
stant, the linear variation of log10(� ) re
ects that of the
lifetime of the leaky level. This is where the 2D nature
of the quantum dot asserts its presence, even though the
decay appears to proceed only in one dimension.
In Fig. 7 we show the occupations of the two levels

with the shortest lifetimes. One sees that when Q < 300

the occupation of the nx = 13 level stays practically con-
stant and nx = 14 level remains empty. For higher values
of Q both levels contribute signi�cantly to the escape life-
time. In this situation:

� (Q) =
1

qa(Q)

�a(Q)
+
qb(Q)

�b(Q)

: (22)

This is shown as the dotted curve in Fig. 6, and it ac-
counts very well for the trend of the lifetimes predicted
by the separable model.
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FIG. 7. Total occupation of levels with nx = 13 (black
squares) and nx = 14 (open squares). The lines are drawn to
guide the eye. The truncated harmonic oscillator model was
used for W (y).

Our separable model favours the appearance of the
linear decay sequences, because of the degeneracy in
lifetime of states with the same nx;s. A non-separable
model would lift that degeneracy and then the lifetime
sequences should show a behaviour intermediate between
the two situations discussed above. In particular, the
sudden change of slope at Q = 302 in Fig. 6 would pre-
sumably spread over a wider range of values of Q. Not
surprisingly, the predicted lifetimes for the observed de-
cays depend sensitively on details of the barrier shape.
Those shown in Fig. 8 correspond to the square well
choice for W (y), and our standard set of parameters. In
addition we show how the lifetimes vary when the barrier
width is changed by amounts ranging from +4% to �3%
(from left to right). As can be seen, the exact value of
each decay lifetime depends quite strongly on the bar-
rier width, as expected for a tunnelling process. But the
number of slow decays is much more stable: four or �ve
in most of the cases shown, and in several cases their life-
times are quite compatible with the experimental points.
In particular it is remarkable that a 2% increase in the
standard barrier width produces a sequence (third line
from left) in excellent agreement with experiment (dis-
connected points shifted to extreme left).
There is a clear distinction between the lifetime trends
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of the thicker and thinner barrier widths. In the latter
one sees very clearly the transition between escape from
the nx = 13 and the nx = 14 levels at Q = 302. For
the thicker barrier widths, escape is dominated by the
nx = 14 levels that become progressively more occupied
above Q = 302.
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FIG. 8. Slow decays: Calculated lifetime sequences cor-
responding to variations of the standard barrier width from
�3% (right) to +4% (left) in steps of 1% . The + signs
joined by a continuous line (to guide the eye) correspond to
the prediction for the standard set of parameters. Experimen-
tal points (left triangles) taken from Fig. 1 with the origin of
Q shifted arbitrarily.
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FIG. 9. Same as Fig. 8, but for the fast decays.

We have explored the dependence of the model pre-
dictions on changes by similar percentages of the barrier
heights, potential 
oor U0, and the width, wy, of W (y).
The results are qualitatively similar to those shown above
for the changes in the barrier width, with a number of
slow decays ranging from 4 to 6, and in some cases they
are very similar to the data in Fig. 1. We therefore
conclude that our model predictions are quite consistent
with the experimental trends, although a quantitative

comparison with the measured lifetimes is hampered by
the strong sensitivity of tunnelling to any small change
in the barrier shape.
Finally we show in Fig. 9 predictions for the fast de-

cays: their number and location in a graph such as that
of �gure 1 depends very sensitively on the time (t0) be-
yond which the experiment measures lifetimes. That is,
as the dot is isolated there must be a burst of very short
lived escapes, but after some seconds one reaches the
stage where separate events can be recorded and the life-
times deduced. The two dashed horizontal lines in Fig.
9 correspond to values of log10(25 s) and log10(35 s). As
can be seen, when we explore the same range of barrier
widths as in Fig. 8, the number of fast decays above that
t0 varies from 3 to 4. The overall trend seems to be con-
sistent with experiment, in particular if the value of t0 is
increased towards the more pessimistic estimate of 35 s.

IV. SUMMARY AND CONCLUSIONS

Electron escape from a strongly isolated dot with ex-
cess electrons has been studied in the framework of the
self-consistent Poisson-Schr�odinger and Poisson-Thomas-
Fermi approximations. Based on these calculations
a rectangular separable potential model has been de-
vised which incorporates the main features of the self-
consistent �eld. Rearrangement e�ects are taken into
account by recalculating the con�ning potential Us(x; y)
after each electron escape.
The use of a separable potential introduces certain cor-

relations in the energy spectrum of the single electron
orbitals. A more realistic con�ning potential would have
a more rounded shape, which would remove the separa-
bility, and modify those correlations. In the same vein,
the tunnelling in our simpli�ed model is 1D, whereas the
actual process is 2D.
We �nd it quite remarkable that despite all these sim-

pli�cations the predictions turn out to be so satisfactory.
The model therefore may be reliable for extrapolating to
longer times. For instance we �nd that the isolated dot
would hold one excess electron for as long as 44 hours.
On such a time scale, one could use well isolated dots
containing a few long lived electrons, to study their en-
tangled states. This would open an interesting new ap-
proach to the implementation of quantum computation
in semiconductor devices.
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APPENDIX A: LIFETIMES

We summarize here the expressions relating the life-
times to the probability of transmission across the bar-
rier. We follow the standard treatment and de�nitions
for alpha decay in nuclear physics, as can be found for
example in ref. [4].
Our potential Us(x; y) is separable, and the electron

can escape only across the barriers in the x-direction.
Therefore, we have adapted the expressions derived in
[4] to the 1D situation.
The lifetime � = 1=� is the inverse of the \decay con-

stant", de�ned as the number of \decays" per second per
parent \dot". For one dot the electron wavefunction is
normalized to unity over the volume inside the barriers,
and � for a given level is just the outgoing 
ux at large
distance.
When the decay probability is small, one can treat the

electron as con�ned in the dot. Classically, its trajectory
will oscillate between the right, xr, and left, xl turning
points, with a period

P = 2

Z xl

xr

dx

v(x)
; (A1)

where v(x) is the classical electron velocity at energy Ex:

v(x) =

r
2

m�
(Ex � U (x)) : (A2)

The 
ux � is then given by the frequency of hits against
the barriers, 2=P , times the transmission probability T
across a barrier, and therefore:

� =
1

�
=

1

T

Z xr

xl

dx

v
: (A3)

This expression is very convenient because the transmis-
sion coe�cient eq. 12 for our parametrized potential,
U (x), is known analytically [13]. For more general bar-
rier pro�les and the long lifetimes of interest, one can
use the WKB approach and its corresponding connec-
tion formulae across the barrier (see e.g. Appendix D of
[4]):

TWKB � e2!

! =

Z xt

xr

� dx =

Z xt

xr

r
2m

�h2
(U (x)� Ex) dx (A4)

If the WKB wave function is used inside the well to de-
termine the period P , the same decay half-life is obtained
as in eq. A3 above.
Since the dot is located inside a crystal at temperature

T 0, via phonon coupling the electrons in the dot should
also be at the same temperature. The level occupations
f(E) are determined by Fermi statistics:

f(E) =
�
1 + e

E�EF
kBT 0

�
�1

; (A5)

where these are now 2D energies. The Fermi level is
obtained from

Q =
X

i=(nx;ny)

2f(Ei); (A6)

where the 2 accounts for spin degeneracy. For the ensem-
ble of electrons in the dot, the 
ux � will now be the sum
of 
uxes for each occupied single particle level, weighted
by the level occupancy:

� =
X

i=(nx;ny)

2f(Ei)�i (A7)

and the corresponding half-life is still � = 1=�. In par-
ticular this argument applies in the T 0 = 0 limit, as we
implicitly assumed in Section II to explain the sequence
of lifetimes.

APPENDIX B: LIFETIME DEPENDENCE ON Q

For a level of given nx, the lifetime depends on Q be-
cause the barrier characteristics change, and so does the
level energy, Enx . The latter varies mainly because U0
depends on Q, and this a�ects the transmission proba-
bility T . To good approximation

dEnx
dQ

'
dU0
dQ

(B1)

Neglecting the dependence of the level lifetime on the
period P , we can write

d ln �

dQ
' �

d lnT

dE

dE

dQ
: (B2)

Taking the transmission probability T from the WKB
expression leads to

d ln �

dQ
= 2

d

dQ

Z
barrier

r
2m�

�h2
(U (x)� E) dx

=

Z
barrier

s
2m�

�h2
1

U (x)�E

�
dU (x)

dQ
�
dE

dQ

�
dx

(B3)

Noting eq. B1, the second contribution to the integral
depends linearly on the placement of the potential 
oor.
However, the variation of the barrier shape (dU (x)=dQ)
cannot be neglected. Indeed, eq. 8 gives approximately

dU (x)

dQ
=
dU0
dQ

0
@1

3
+
2

3

sinh2
�
x�xb
wb

�
e�2� cosh2

�
x�xb
wb

� �
�
1
A

when x < xb

dU (x)

dQ
=
dU0
dQ

0
@1

3
�
1

3

sinh2
�
x�xb
wb

�
e2� cosh2

�
x�xb
wb

� �
�
1
A

when x > xb : (B4)
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Using B4, the contribution from dU=dQ to the integral
of eq. B3 is obtained with an accuracy better than 2%.
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FIG. 10. Dependence of lifetime on Q for the occupied lev-
els with nx = 11: + signs; nx = 12: � signs; nx = 13: stars
and nx = 14 open squares. The dash dotted lines correspond
to eq. B5.

For the standard choice of parameters, andQ in the range
300 to 310 the computed values of d log10 �=dQ turn out
to be ' �0:14 for the levels of interest. In Fig. 10 we
plot the evolution of the level lifetimes with Q, compared
to the expression (Q0 = 303)

log10 �nx (Q) = log10 �nx(Q0)� 0:14(Q�Q0) : (B5)
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