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When is the lowest order WKB
quantization exact?1, 2

R.K. Bhaduri, D.W.L. Sprung, and Akira Suzuki

Abstract: First, two conditions are specified for the lowest order Wentzel–Kramers–
Brillouin quantization rule to yield exact results. These rules are related to the periodic
orbit decomposition of the quantum density of states. This approach is then applied to
supersymmetric quantum mechanics. It leads to a new derivation of the result that shape-
invariant potentials give exact results when the classical action is calculated with the square
of the super potential, but without the Maslov index or the Langer correction.

PACS Nos.: 03.65.Sq, 12.60.Jv

Résumé : Nous précisons d’abord deux conditions pour que la quantification WKB à l’ordre
le plus bas donne des résultats exacts. Ces règles sont reliées à la décomposition en orbite
périodiques de la densité quantique d’états. Cette approche est alors appliquée à la mécanique
quantique super-symétrique. Cela donne une nouvelle dérivation du résultat que les potentiels
invariants de forme donnent des résultats exacts lorsque l’action classique est calculée avec le
carré du super-potentiel, mais sans indice de Maslov ou correction de Langer.

[Traduit par la Rédaction]

1. Introduction

Much of this paper is based on some recent work [1] done in collaboration with some other col-
leagues. Before giving an account of this, we briefly recall the Wentzel–Kramers–Brillouin (WKB)
approximation for the simplest cases.

Consider a potential V1 in the coordinate x in one dimension. The results may be generalized to
central potentials in higher dimensions for a specified partial wave. We define the classical action

S1(E) =
∮

p(x) dx = 2
√

2m

∫ x2

x1

√
E − V1(x) dx (1)

In (1), the action integral is over a complete periodic orbit at energy E, where x1 and x2 are the classical
turning points, and V1(x1) = V1(x2) = E (see Fig. 1). The WKB quantization rule for the energy
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Fig. 1. An example of the potential V1(x) appearing in (1) with the classical turning points.
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Fig. 2. Examples of one-dimensional potentials and corresponding Maslov indices. (a), depicts a harmonic
well; (b), an infinite well, and (c) a three-dimensional central potential, respectively. The corresponding
Maslov indices are for (a) η = 1/2, for (b) 1, and for (c) 3/4.
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spectrum is given by

S1(E) = (n + η)h, n = 0, 1, 2, 3 . . . (2)

where η is the Maslov index (independent of Planck’s constant h), and is determined by matching
the wave functions from both ends. The rule for determining the Maslov index η in the simple one-
dimensional case is straightforward [2], and is illustrated in Figs. 2a–2c, for three different cases. We
may express the rule by setting

η = C1 + C2 (3)

where the constants Ci, (i = 1, 2) are determined by the end points of the orbit in the potential. For a
smooth wall at the intersection, Ci = 1/4, but for a sharp wall, Ci = 1/2. In Fig. 2a, for a harmonic
well, the orbit encounters a smooth wall at both ends, so C1 = C2 = 1/4, and η = 1/2. In Fig. 2b, for
an infinite well, C1 + C2 = 1/2, so η = 1. In the last case, shown in Fig. 2c, η = 3/4. For all three
examples shown in Fig. 2, the WKB quantization rule, with the appropriate Maslov indices, gives the
exact results. For completeness, we point out that in higher dimensions it is also necessary to implement
the Langer correction [3] to the centrifugal barrier in each partial wave.

2. Exactness conditions for WKB

In general, the WKB series with higher order terms in � is an asymptotic one. In certain cases,
however, the series may be absolutely convergent and may yield exact results. This happens when both
conditions given below are satisfied
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1. The Schrödinger eigenvalue equation with the potential is exactly solvable.

2. The energy spectrum En is given as an algebraic function of the quantum number n, i.e., En =
f1(n), that may be solved analytically to obtain n = F1(E).

There are many potentials that satisfy the above conditions. These include the harmonic oscillator,
square well, Coulomb, Morse, Rosen–Morse, Eckart, Pöschl–Teller, etc. that are listed in the text
Supersymmetry in quantum mechanics by Cooper et al. [4]. Note that if only the first condition above
is satisfied, but not the second one, the WKB results are not exact. An example is the two-dimensional
disc billiard, where a particle is confined in a hard disc of radius R. The eigenvalues are given by the
zeros of the cylindrical Bessel function Jl(knR) = 0, where the kn’s are the allowed wave numbers.
This equation, however, cannot be inverted analytically, and the WKB quantization rule is, therefore,
not exact.

3. Connection to periodic orbit theory

When the two conditions above are satisfied, there is a direct and exact way of decomposing the
quantum density of states into a smooth and an oscillating part. This is a very special case of the more
general periodic orbit theory (POT) [5] We recall that the energy spectrum is an algebraic function f1(n)

of the quantum number n. At this stage, for reasons that will become clear later, let us shift the zero of
energy at the ground state n = 0 of the spectrum, so that f1(0) = 0. We may write

δ
(
E − E(1)

n

)
= δ (E − f1(n)) = δ (n − F1(E)) F ′

1(E) (4)

where the algebraic relation En = f1(n) has been inverted to define

n = F1(E) (5)

Note that we have used the algebraic expression between integer n’s and En’s to provide the relationship
for continuous variables in (5). The continuous function F1(E) that we obtain in this way will be shown
to satisfy the requirements of POT and classical mechanics (see (12)–(16)). In this sense, our choice of
F(E) using (5) is not only natural, but also necessary.

For the spectrum under consideration, f1(0) = 0 implies the condition

F1(0) = 0 (6)

The quantum density of states g1(E) for the discrete spectrum of H1 is defined as

g1(E) =
∞∑

n=0

d(n)δ
(
E − E(1)

n

)
(7)

where d(n) is the degeneracy of states at E = En. Writing d(n) = d(F1(E)) = D(E), and using (4),
we obtain

g1(E) = D(E)F ′
1(E)

∞∑
n=0

δ (n − F1(E)) (8)

(D(E) = 1 for one-dimensional potentials). We now use the identity

∞∑
n=0

δ(n − x) =
∞∑

k=−∞
exp (2iπkx) , x ≥ 0 (9)
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Fig. 3. Numerical evaluation of the trace formula (10) for an infinite square-well potential. The spectrum is
given by f (n) = n(n+2)E0 with n = 0, 1, 2, …and E0 = �

2π2/(2mL2). We get F1(E) = (1+E/E0)
1/2 −1.

In this figure, E is plotted in units of E0. To ensure uniform line shapes, correct degeneracies, and strict
numerical convergence, we have employed the usual prescription used in numerical semiclassics (see, for
example, Sect. 5.5 of ref. 6), which is to convolve the trace formula with a Gaussian of width σ . For this
particular calculation, we have truncated the sum at kmax = 104, while prescribing σ = 0.05.

to obtain the desired expression [6, 7]

g1(E) = D(E)F ′
1(E)

[
1 + 2

∞∑
k=1

cos [2πkF1(E)]

]
(10)

For a given F1(E), this is an exact expression for the quantum density of states g1(E) (see the example
of a square-well potential in Fig. 3). It is in the form of a trace formula in POT [6] when F1(E) (to
within a dimensionless additive constant η) is identified with the action S1(E) of the primitive classical
periodic orbit of the potential V1(x)

S1(E)

h
= F1(E) + η (11)

S1(E) = 2
√

2m

∫ x2

x1

√
E − V1 dx (12)

In the above, x1 and x2 are the classical turning points at which E = V1(x). The (h-independent)
constant η may be determined by using (11), and applying the condition given by (6) for E = 0. We
then obtain

η = S1(0)

h
(13)

We may prove (11) by noting that the (smooth) Thomas–Fermi density of states, given by the first
term on the right-hand side of (10), is the Laplace inverse of the classical canonical partition function [8]

© 2006 NRC Canada



Bhaduri et al.
Pagination not final/Pagination non finale

5

of the Hamiltonian H cl
1 (x, p) = p2/2m + V1(x)

F ′
1(E) = L−1

E Zcl
1 (β) = 1

2πi

∫ c+i∞

c−i∞
Zcl

1 (β) eβE dβ (14)

Since

Zcl
1 (β) = 1

h

∫
exp

[
−β H cl

1 (x, p)
]

dx dp

= 1

2π�

√
2mπ

β

∫ ∞

−∞
exp [−βV1(x)] dx (15)

it follows from (14) that

F ′
1(E) =

√
2m

2π�

∫ x2

x1

dx√[E − V1(x)] (16)

From this, (11) follows on integration over energy. Note that F ′
1(E)/h is the period of the classical

periodic orbit and is unique, whereas F1(E) involves a constant of integration, η. Using (5) together
with (11) and (12), we obtain the important result that the lowest order WKB quantization rule is exact
for V1

S1(E) =
∮

p(x) dx = (n + η)h (17)

where p(x) = √
2m[E − V1(x)]. We also see that the constant η is the so-called Maslov index, which

may vary from one potential to another.

4. Supersymmetric WKB

The Maslov index η may be eliminated by performing WKB in the framework of supersymmetric
(SUSY) quantum mechanics (QM), which is dubbed SWKB [4, 9]. We first set the notation by reviewing
the relevant equations of SUSY QM. Consider a potential V (x; a1) of a single variable x, and a set of
parameters denoted by a1. One defines a “super potential”

W(x; a1) = − �√
2m

φ′
0(x)

φ0(x)
(18)

where φ0(x) is the ground-state solution of the Schrödinger equation at energy E0 for the potential
V1(x, a1), and the prime denotes a spatial derivative. Let us define

V1(x; a1) = V (x; a1) − E0 (19)

so that the ground-state energy of the Hamiltonian

H1 = − �
2

2m

d2

dx2 + V1(x; a1)

lies at zero energy, i.e., E
(1)
0 = 0. Then it is easy to show that

V1(x; a1) = W 2(x; a1) − �√
2m

W ′(x; a1)
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The SUSY partner Hamiltonian H2 has the potential V2(x; a1), and has an energy spectrum identical
to that of H1, except for the absence of the zero-energy state. The ground state of H2, denoted by E

(2)
0

coincides with the first excited state E
(1)
1 of H1, and so on. The partner potential V2(x; a1) is

V2(x; a1) = W 2(x; a1) + �√
2m

W ′(x; a1)

Shape invariance in the partner potentials is defined by the relation

V2(x; a1) = V1 (x; a2) + R (a1) (20)

where the new parameters a2 are some function of a1, and the remainder R(a1) is independent of the
variable x. We restrict our consideration of shape invariance to those cases where a2 and a1 are related
by translation, a2 = a1 + α. A shape-invariant potential in this class is exactly solvable and its energy
spectrum is expressible as an algebraic function of the quantum number.

We now show that the Maslov index η may be eliminated from the quantization rule [1] by employing
the superpotential formalism, and the result of Barclay and Maxwell [10]. They made the important
observation that the shape-invariant class of potentials under consideration obey one or other of the
following equations:
Class I

�√
2m

dW

dx
= A + BW 2(x) + CW(x) (21)

Class II

�√
2m

dW

dx
= A + BW 2(x) + CW(x)

√
A + BW 2 (22)

where A, B, and C are constants. Using these equations, we now show that S1(E), as defined by (12),
obeys the relation (x1s , x2s are the turning points in SWKB)

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + hη (23)

To this end, note that the action S1 can be expressed as an inverse Laplace transform

S1(E) = √
2mπL−1

E

∫ ∞

−∞

exp
(
−β

[
W 2 − �W ′/

√
2m
])

β3/2 dx (24)

At this point, for simplicity of notation, let us temporarily put �/
√

2m = γ . Expanding the exponential
in powers of W ′, we have

S1(E) = √
2mπL−1

E

∫ ∞

−∞
e−βW 2

β3/2

(
1 +

∞∑
k=0

(
γβW ′)k+1

(k + 1)!

)
dx

= 2
√

2m

∫ x2s

x1s

√
E − W 2 dx +

∞∑
k=0

�

(k + 1)!
∂k

∂Ek

∫ √
E

−√
E

(γW ′)k√
E − W 2

dW (25)

Note that now the limits in x are replaced by the condition W 2(x) = E. The integral for k = 0 may be
done immediately, yielding π . To evaluate the integrals for integer k ≥ 1, we assume that γ W ′ obeys
Barclay’s equation (21) (Class I) or (22) (Class II).
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For Class I, we require integrals of the type

Ik =
∫ √

E

−√
E

(
A + BW 2 + CW

)k
√

E − W 2
dW (26)

On expanding the numerator, terms with odd powers of W vanish on integration. One now sees that
only the piece of Ik involving the highest power of W 2 survives the differentiation in (25). Consider the
integral with W 2k . With the substitution W = √

E sin θ∫ √
E

−√
E

W 2k

√
E − W 2

dW = Ek

∫ π/2

−π/2
sin2k θ dθ = Ek (2k − 1)!!

(2k)!! π (27)

Accordingly, (25) reduces to

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + �π

[
1 +

∞∑
k=1

Bk (2k − 1)!!
(k + 1) (2k)!!

]
(28)

By construction, W 2(x) has coincident turning points at E = 0, so the first term on the right-hand side
above vanishes at this energy. Comparing with (13), we deduce that

η = 1

2

[
1 +

∞∑
k=1

Bk (2k − 1)!!
(k + 1) (2k)!!

]
= 1

B

[
1 − √

1 − B
]

(29)

Note, from (21), that B is independent of Planck’s constant h. Comparing now with (11), we deduce
our main result

2π�F1(E) = √
2m

∮ √
E − W 2 dx (30)

Using (5), we get as the exact result the SWKB expression∮ √
2m(E − W 2) dx = 2π�n, n = 0, 1, 2, 3, . . . (31)

that yields the quantum spectrum of V1(x).
A similar derivation may be carried out for Class II superpotentials obeying (22). The starting point,

as before, is (25), and the integral to be considered is now of the form

Jk =
∫ √

E

−√
E

(
A + BW 2

)k (
1 + CW/

√
A + BW 2

)k

√
E − W 2

dW (32)

The second bracketed term in the numerator on the right-hand side may be expanded binomially, and
the odd-powered terms in W vanish on integration. We then have

Jk =
nmax∑
n=0

k!
(k − 2n)! (2n)!

∫ √
E

−√
E

(
A + BW 2

)k−n
(CW)2n

√
E − W 2

dW (33)

where nmax = k/2 for k even, and (k − 1)/2 for k odd. The highest power of W in the numerator is
again W 2k and again only terms with this highest power (with coefficient Bk−nC2n) will survive when
Jk is differentiated k times. Accordingly, (25) reduces to

S1(E) = 2
√

2m

∫ x2s

x1s

√
E − W 2 dx + �π

[
1 +

∞∑
k=1

(2k − 1)!!
(k + 1) (2k)!!

nmax∑
n=0

k! Bk−nC2n

(k − 2n)! (2n)!

]
(34)
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The main results given earlier by (30) and (31) remain valid.
The summation in (34) can be done similarly to that in (29). The inner summation provides the

mean of
(
B ± C

√
B
)k

. Then we find

η = 1

2z+

[
1 −√

1 − z+
]

+ 1

2z−

[
1 −√

1 − z−
]

(35)

where

z± = B ± C
√

B (36)

The results (29) and (36) are a simple demonstration of the relation between WKB and SWKB, which
Barclay [11] approached in a different manner.

It may now be instructive to illustrate our results with a few examples:

1. Infinite square well. In this example, W(x) = −[�π/(
√

2mL)][cot(πx/L)]. It belongs to Class
I with A = �

2π2/(2mL2) = E0, B = 1, and C = 0. The quantum spectrum of V1 is given
by f (n) = n(n + 2)E0, with n = 0, 1, 2, …. Then F1(E) = (1 + E/E0)

1/2 − 1. A careful
numerical evaluation of the trace formula (10) with this F1(E) reproduces the quantum spectrum
(see Fig. 3). It is also easy to check (30) by evaluating the action integral of W 2(x) analytically,
and (23) using (29) (η = 1).

2. The three-dimensional harmonic oscillator in the lth partial wave. In this example, W(r) =√
2mωr/2 − [�/(

√
2m)][(l + 1)/r]. It belongs to Class II with A = �ω, B = 1/(2l + 2), and

C = −√
B. The quantum spectrum, measured from the lowest state in a fixed partial wave is

f (n) = 2n�ω, so F(E) = E/(2�ω). Again, (30) may be checked explicitly.

To verify (23), we find from (36) that

η = 1

2
+ 1

2

[
� + 1

2
−√

�(� + 1)

]
(37)

in this example. The first 1/2 represents the usual half-integer quantization in lowest order WKB, while
the terms in square brackets arise from the sum of order �

2 and higher corrections. As discussed in
detail by Seetharaman [12] and Barclay [11] they can be removed by adopting the Langer prescription.
We have also checked other examples analytically.
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